OPC Unified Architecture Specification
Part 5: Information Model
1 Scope

This specification defines the Information Model of the OPC Unified Architecture. The Information Model describes standardised Nodes of a server’s AddressSpace. These Nodes are standardised types as well as standardised instances used for diagnostics or as entry points to server specific Nodes. Thus, the Information Model defines the AddressSpace of an empty OPC UA server. However, it is not expected that all servers will provide all of these Nodes.

2 Reference documents

Part 1: Error! Unknown document property name.
Error! Unknown document property name.
Part 2: Error! Unknown document property name.
Error! Unknown document property name.
Part 3: Error! Unknown document property name.
Error! Unknown document property name.
Part 4: Error! Unknown document property name.
Error! Unknown document property name.
Part 6: Error! Unknown document property name.
Error! Unknown document property name.
Part 7: Error! Unknown document property name.
Error! Unknown document property name.
Part 9: Error! Unknown document property name.
Error! Unknown document property name.
Part 10: Error! Unknown document property name.
Error! Unknown document property name.
Part 11: Error! Unknown document property name.
Error! Unknown document property name.
3 Terms, definitions, and conventions

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 apply.

1) AddressSpace

2) Attribute

3) Event

4) Information Model

5) Method

6) MonitoredItem

7) Node

8) NodeClass

9) Notification

10) Object

11) ObjectType

12) Profile

13) Reference

14) ReferenceType

15) Service

16) Service Set

17) Subscription

18) Variable

19) View

3.2 OPC UA Part 2 terms

There are no Part 2 terms used in this part.

3.3 OPC UA Part 3 terms

The following terms defined in Part 3 apply.

20) DataVariable

21) EventType

22) Hierarchical Reference

23) InstanceDeclaration

24) ModellingRule

25) Property

26) SourceNode

27) TargetNode

28) TypeDefinitionNode

29) VariableType

3.4 OPC UA Part 4 terms

There are no Part 4 terms used in this part.

3.5 OPC UA Information Model terms

3.5.1 ClientUserId

A String that identifies the user of the client requesting an action.
NOTE: The ClientUserId is obtained directly or indirectly from the UserIdentityToken passed by the Client in the ActivateSession Service call. See 6.4.3 for details.

3.6 Abbreviations and symbols

UA
Unified Architecture

XML
Extensible Markup Language

3.7 Conventions for Node descriptions

Node definitions are specified using tables (See Table 1)
Table 1 – Type Definition Table

	Attribute
	Value

	Attribute name
	Attribute value. If it is an optional Attribute that is not set “--“ will be used.

	
	

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	ReferenceType name
	NodeClass of the TargetNode.
	BrowseName of the target Node. If the Reference is to be instantiated by the server, then the value of the target Node’s BrowseName is “--“.
	Attributes of the referenced Node, only applicable for Variables and Objects.

	Referenced ModellingRule of the referenced Object.

	Notes –

1) Notes referencing footnotes of the table content.

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the TargetNode and its NodeClass.

· If the TargetNode is a component of the Node being defined in the table the Attributes of the composed Node are defined in the same row of the table. That implies that the referenced Node has a HasModelParent Reference with the Node defined in the Table as TargetNode (see Part 3 for the definition of ModelParents).

· The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array, for multi-dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For all arrays the ArrayDimensions is set as identified by <number> values. If no <number> is set, the corresponding dimension is set to 0, indicating an unknown size. If no number is provided at all the ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar DataType and the ValueRank is set to the corresponding value (see Part 3). In addition, ArrayDimensions is set to null or is omitted. If it can be Any or ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or “{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see Part 3) and the ArrayDimensions is set to null or is omitted. In Table 2 examples are given.

Table 2 – Examples of DataTypes

	Notation
	Data​Type
	Value​Rank
	Array​Dimensions
	Description

	Int32
	Int32
	-1
	omitted or NULL
	A scalar Int32

	Int32[]
	Int32
	1
	omitted or {0}
	Single-dimensional array of Int32 with an unknown size

	Int32[][]
	Int32
	2
	omitted or {0,0}
	Two-dimensional array of Int32 with unknown sizes for both dimensions

	Int32[3][]
	Int32
	2
	{3,0}
	Two-dimensional array of Int32 with a size of 3 for the first dimension and an unknown size for the second dimension

	Int32[5][3]
	Int32
	2
	{5,3}
	Two-dimensional array of Int32 with a size of 5 for the first dimension and a size of 3 for the second dimension

	Int32{Any}
	Int32
	-2
	omitted or NULL
	An Int32 where it is unknown if it is scalar or array with any number of dimensions

	Int32{ScalarOrOneDimension}
	Int32
	-3
	omitted or NULL
	An Int32 where it is either a single-dimensional array or a scalar

· The TypeDefinition is specified for Objects and Variables.

· The TypeDefinition column specifies a NodeId of a TypeDefinitionNode, i.e. the specified Node points with a HasTypeDefinition Reference to the corresponding TypeDefinitionNode. The symbolic name of the NodeId is used in the table.
· The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType shall be used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used ReferenceType, their NodeClass and their BrowseName are specified. A reference to another of this document points to their definition.

If no components are provided, the DataType, TypeDefinition and ModellingRule columns may be omitted and only a Comment column is introduced to point to the Node definition.

Components of Nodes can be complex, i.e. containing components by themselves. The TypeDefinition, NodeClass, DataType and ModellingRule can be derived from the type definitions, and the symbolic name can be created as defined in 4.1. Therefore those containing components are not explicitly specified; they are implicitly specified by the type definitions.

4 NodeIds and BrowseNames

4.1 NodeIds

The NodeIds of all Nodes described in this document are only symbolic names. Part 6 defines the actual NodeIds.

The symbolic name of each Node defined in this document is its BrowseName, or, when it is part of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself. In this case “part of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all Nodes not being part of another Node have a unique name in this document, the symbolic name is unique. For example, the ServerType defined in 6.3.1 has the symbolic name “ServerType”. One of its InstanceDeclarations would be identified as “ServerType.ServerCapabilities”. Since this Object is complex, another InstanceDeclaration of the ServerType is “ServerType.ServerCapabilities.MinSupportedSampleRate”. The Server Object defined in 8.3.2 is based on the ServerType and has the symbolic name “Server”. Therefore, the instance based on the InstanceDeclaration described above has the symbolic name “Server.ServerCapabilities.MinSupportedSampleRate”.

The NamespaceIndex for all NodeIds defined in this specification is 0. The namespace for this NamespaceIndex is specified in Part 3.

Note: This specification does not only define concrete Nodes, but also requires that some Nodes have to be generated, for example one for each Session running on the server. The NodeIds of those Nodes are server-specific, including the Namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex 0, because they are not defined by the OPC Foundation but generated by the Server.

4.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this part is specified in the tables defining the Nodes. The NamespaceIndex for all BrowseNames defined in this part is 0.

5 Common Attributes

5.1 General

For all Nodes specified in this part, the Attributes named in Table 3 shall be set as specified in the table.

Table 3 – Common Node Attributes

	Attribute
	Value

	DisplayName
	The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated names for other LocaleIds is vendor specific.

	Description
	Optionally a vendor specific description is provided

	NodeClass
	Shall reflect the NodeClass of the Node

	NodeId
	The NodeId is described by BrowseNames as defined in 4.1 and defined in Part 6

	WriteMask
	Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it shall set all Attributes to not writeable that are not said to be vendor-specific. For example, the Description Attribute may be set to writeable since a Server may provide a server-specific description for the Node. The NodeId shall not be writeable, because it is defined for each Node in this specification.

	UserWriteMask
	Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask Attribute apply.

5.2 Objects

For all Objects specified in this part, the Attributes named in Table 4 shall be set as specified in the table.

Table 4 – Common Object Attributes

	Attribute
	Value

	EventNotifier
	Whether the Node can be used to subscribe to Events or not is vendor specific

5.3 Variables

For all Variables specified in this part, the Attributes named in Table 5 shall be set as specified in the table.

Table 5 – Common Variable Attributes

	Attribute
	Value

	MinimumSamplingInterval
	Optionally, a vendor-specific minimum sampling interval is provided

	AccessLevel
	The access level for Variables used for type definitions is vendor-specific, for all other Variables defined in this part, the access level shall allow a current read; other settings are vendor specific.

	UserAccessLevel
	The value for the UserAccessLevel Attribute is vendor-specific. It is assumed that all Variables can be accessed by at least one user.

	Value
	For Variables used as InstanceDeclarations, the value is vendor-specific; otherwise it shall represent the value described in the text.

	ArrayDimensions
	If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is vendor-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the Variable.

5.4 VariableTypes

For all VariableTypes specified in this part, the Attributes named in Table 6 shall be set as specified in the table.

Table 6 – Common VariableType Attributes

	Attributes
	Value

	Value
	Optionally a vendor-specific default value can be provided

	ArrayDimensions
	If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is vendor-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the ArrayDimensions Attribute shall be specified in the table defining the VariableType.

6 Standard ObjectTypes

6.1 General

Typically, the components of an ObjectType are fixed and can be extended by subtyping. However, since each Object of an ObjectType can be extended with additional components, This specification allows extending the standard ObjectTypes defined in this document with additional components. Thereby, it is possible to express the additional information in the type definition that would already be contained in each Object. Some ObjectTypes already provide entry points for server specific extensions. However, it is not allowed to restrict the components of the standard ObjectTypes defined in this Part. An example of extending the ObjectTypes is putting the standard Property NodeVersion defined in Part 3 into the BaseObjectType, stating that each Object of the server will provide a NodeVersion.

6.2 BaseObjectType

The BaseObjectType is used as type definition whenever there is an Object having no more concrete type definition available. Servers should avoid using this ObjectType and use a more specific type, if possible. This ObjectType is the base ObjectType and all other ObjectTypes shall either directly or indirectly inherit from it. However, it might not be possible for servers to provide all HasSubtype References from this ObjectType to its subtypes, and therefore it is not required to provide this information.

There are no References except for HasSubtype References specified for this ObjectType. It is formally defined in Table 7.

Table 7 – BaseObjectType Definition

	Attribute
	Value

	BrowseName
	BaseObjectType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasSubtype
	ObjectType
	ServerType
	Defined in 6.3.1

	HasSubtype
	ObjectType
	ServerCapabilitiesType
	Defined in 6.3.2

	HasSubtype
	ObjectType
	ServerDiagnosticsType
	Defined in 6.3.3

	HasSubtype
	ObjectType
	SessionsDiagnosticsSummaryType
	Defined in 6.3.4

	HasSubtype
	ObjectType
	SessionDiagnosticsObjectType
	Defined in 6.3.5

	HasSubtype
	ObjectType
	VendorServerInfoType
	Defined in 6.3.6

	HasSubtype
	ObjectType
	ServerRedundancyType
	Defined in 6.3.7

	HasSubtype
	ObjectType
	BaseEventType
	Defined in 6.4.2

	HasSubtype
	ObjectType
	ModellingRuleType
	Defined in 6.5

	HasSubtype
	ObjectType
	FolderType
	Defined in 6.6

	HasSubtype
	ObjectType
	DataTypeEncodingType
	Defined in 6.7

	HasSubtype
	ObjectType
	DataTypeSystemType
	Defined in 6.8

6.3 ObjectTypes for the Server Object

6.3.1 ServerType

This ObjectType defines the capabilities supported by the OPC UA server. It is formally defined in Table 8.

Table 8 – ServerType Definition

	Attribute
	Value

	BrowseName
	ServerType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in 6.2

	HasProperty
	Variable
	ServerArray
	String[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	NamespaceArray
	String[]
	PropertyType
	Mandatory

	HasComponent
	Variable
	ServerStatus1
	ServerStatusDataType
	ServerStatusType
	Mandatory

	HasProperty
	Variable
	ServiceLevel
	Byte
	PropertyType
	Mandatory

	HasProperty
	Variable
	Auditing
	Boolean
	PropertyType
	Mandatory

	HasComponent
	Object
	ServerCapabilities1
	-
	ServerCapabilitiesType
	Mandatory

	HasComponent
	Object
	ServerDiagnostics1
	-
	ServerDiagnosticsType
	Mandatory

	HasComponent
	Object
	VendorServerInfo
	-
	VendorServerInfoType
	Mandatory

	HasComponent
	Object
	ServerRedundancy1
	-
	ServerRedundancyType
	Mandatory

	Notes –

1) Containing Objects and Variables of these Objects and Variables are defined by their BrowseName defined in the corresponding TypeDefinitionNode. The NodeId is defined by the composed symbolic name described in 4.1.

ServerArray defines an array of server URIs. This Variable is also referred to as the server table. Each URI in this array represents a globally-unique logical name for a server within the scope of the network in which it is installed. Each OPC UA server instance has a single URI that is used in the server table of other OPC UA servers. Index 0 is reserved for the URI of the local server
. Values above 0 are used to identify remote servers and are specific to a server. Part 4 describes discovery mechanism that can be used to resolve URIs into URLs.

The indexes into this table are referred to as server indexes or server names. They are used in OPC UA Services to identify TargetNodes of References that reside in remote servers. Clients may read the entire table or they may read individual entries in the table. The server shall not modify or delete entries of this table while any client has an open session to the server, because clients may cache this table. A server may add entries to the table even if clients are connected to the server.

NamespaceArray defines an array of namespace URIs. This Variable is also referred as namespace table. The indexes into this table are referred to as NamespaceIndexes. NamespaceIndexes are used in NodeIds in OPC UA Services, rather than the longer namespace URI. Index 0 is reserved for the OPC UA namespace, and index 1 is reserved for the local server. Clients may read the entire table or they may read individual entries in the table. The server shall not modify or delete entries of this table while any client has an open session to the server, because clients may cache this table. A server may add entries to the table even if clients are connected to the server. It is recommended that servers not change the indexes of this table but only add entries, because the client may cache NodeIds using the indexes. Nevertheless, it might not always be possible for servers to avoid changing indexes in this table. Clients that cache NamespaceIndexes of NodeIds should always check when starting a session to verify that the cached NamespaceIndexes have not changed.

ServerStatus contains elements that describe the status of the server. See 12.10 for a description of its elements.

ServiceLevel describes the ability of the server to provide its data to the client. The value range is from 0 to 255, where 0 indicates the worst and 255 indicates the best. The concrete values are vendor-specific. The intent is to provide the clients an indication of availability among redundant servers.

Auditing is a Boolean specifying if the server is currently generating audit events. It is set to TRUE if the server generates audit events, otherwise to false. The profiles defined in Part 7 specify what kind of audit events are generated by the server.

ServerCapabilities defines the capabilities supported by the OPC UA server. See 6.3.2 for its description.

ServerDiagnostics defines diagnostic information about the OPC UA server. See 6.3.3 for its description.

VendorServerInfo represents the browse entry point for vendor-defined server information. This Object is required to be present even if there are no vendor-defined Objects beneath it. See 6.3.6 for its description.

ServerRedundancy describes the redundancy capabilities provided by the server. This Object is required even if the server does not provide any redundancy support. If the server supports redundancy, then a subtype of ServerRedundancyType is used to describe its capabilities. Otherwise, it provides an Object of type ServerRedundancyType with an empty array of RedundancySupportArray. See 6.3.7 for the description of ServerRedundancyType.

6.3.2 ServerCapabilitiesType

This ObjectType defines the capabilities supported by the OPC UA server. It is formally defined in Table 9.

Table 9 – ServerCapabilitiesType Definition

	Attribute
	Value

	BrowseName
	ServerCapabilitiesType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in 6.2

	HasProperty
	Variable
	ServerProfileArray
	String[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	LocaleIdArray
	LocaleId[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	MinSupportedSampleRate
	Duration
	PropertyType
	Mandatory

	HasProperty
	Variable
	MaxBrowseContinuationPoints
	UInt16
	PropertyType
	Mandatory

	HasProperty
	Variable
	MaxQueryContinuationPoints
	UInt16
	PropertyType
	Mandatory

	HasProperty
	Variable
	MaxHistoryContinuationPoints
	UInt16
	PropertyType
	Mandatory

	HasProperty
	Variable
	SoftwareCertificates
	SoftwareCertificate[]
	PropertyType
	Mandatory

	HasComponent
	Object
	ModellingRules
	
	FolderType
	Mandatory

	HasComponent
	Object
	AggregateFunctions
	
	FolderType
	Mandatory

	HasComponent
	Variable
	Vendor specific Variables of a subtype of the ServerVendorCapabilityType defined in 7.5
	--

ServerProfileArray defines the conformance profile of the server. See Part 7 for the definitions of server profiles.

LocaleIdArray is an array of LocaleIds that are known to be supported by the server. The server might not be aware of all LocaleIds that it supports because it may provide access to underlying servers, systems or devices that do not report the LocaleIds that they support.

MinSupportedSampleRate defines the minimum supported sample rate, including 0, which is supported by the server.

MaxBrowseContinuationPoints is an integer specifying the maximum number of parallel continuation points of the Browse Service that the server can support per session. The value specifies the maximum the server can support under normal circumstances, so there is no guarantee the server can always support the maximum. The client should not open more Browse calls with open continuation points than exposed in this Variable. The value 0 indicates that the server does not restrict the number of parallel continuation points the client should use.

MaxQueryContinuationPoints is an integer specifying the maximum number of parallel continuation points of the QueryFirst Services that the server can support per session. The value specifies the maximum the server can support under normal circumstances, so there is no guarantee the server can always support the maximum. The client should not open more QueryFirst calls with open continuation points than exposed in this Variable. The value 0 indicates that the server does not restrict the number of parallel continuation points the client should use.

MaxHistoryContinuationPoints is an integer specifying the maximum number of parallel continuation points of the ReadHistory Services that the server can support per session. The value specifies the maximum the server can support under normal circumstances, so there is no guarantee the server can always support the maximum. The client should not open more ReadHistory calls with open continuation points than exposed in this Variable. The value 0 indicates that the server does not restrict the number of parallel continuation points the client should use.
SoftwareCertificates is an array of SoftwareCertificates containing all certificates supported by the server. This shall be the same list of certificates as returned by the CreateSession Service. The certificates in this Property are not signed.
ModellingRules is an entry point to browse to all ModellingRules supported by the server. All ModellingRules supported by the Server should be able to be browsed starting from this Object.
AggregateFunctions is an entry point to browse to all AggregateFunctions supported by the server. All AggregateFunctions supported by the Server should be able to be browsed starting from this Object. AggregateFunctions are Objects of AggregateFunctionType.
The remaining components of the ServerCapabilitiesType define the server-specific capabilities of the server. Each is defined using a HasComponent Reference whose target is an instance of a vendor-defined subclass of the abstract ServerVendorCapabilityType (see 7.5). Each subtype of this type defines a specific server capability. The NodeIds for these Variables and their VariableTypes are server-defined.

6.3.3 ServerDiagnosticsType

This ObjectType defines diagnostic information about the OPC UA server. This ObjectType is formally defined in Table 10.

Table 10 – ServerDiagnosticsType Definition

	Attribute
	Value

	BrowseName
	ServerDiagnosticsType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType / TypeDefinition
	Modelling-Rule

	Subtype of the BaseObjectType defined in 6.2

	HasComponent
	Variable
	ServerDiagnosticsSummary
	ServerDiagnosticsSummaryDataType

ServerDiagnosticsSummaryType
	Mandatory

	HasComponent
	Variable
	SamplingIntervalDiagnosticsArray
	SamplingIntervalDiagnosticsDataType[]

SamplingIntervalDiagnosticsArrayType
	Optional

	HasComponent
	Variable
	SubscriptionDiagnosticsArray
	SubscriptionDiagnosticsDataType[]

SubscriptionDiagnosticsArrayType
	Mandatory

	HasComponent
	Object
	SessionsDiagnosticsSummary
	--

SessionsDiagnosticsSummaryType
	Mandatory

	HasProperty
	Variable
	EnabledFlag
	Boolean

PropertyType
	Mandatory

ServerDiagnosticsSummary contains diagnostic summary information for the server, as defined in 12.9.

SamplingIntervalDiagnosticsArray is an array of diagnostic information per sampling rate as defined in 12.8. There is one entry for each sampling rate currently used by the server. Its TypeDefinitionNode is the VariableType SamplingIntervalDiagnosticsArrayType, providing a Variable for each entry in the array, as defined in 7.11. The SamplingIntervalDiagnostricsArray
is optional and is expected to be used only when the server has a fixed set of supported sampling intervals. If the SamplingIntervalDiagnostricsArray is provided the Variables of each entry of the array must have a fixed NodeId for a specific sampling interval that shall persists by a restart of the server.
SubscriptionDiagnosticsArray is an array of Subscription diagnostic information per subscription, as defined in 12.15. There is one entry for each Notification channel actually established in the server. Its TypeDefinitionNode is the VariableType SubscriptionDiagnosticsArrayType, providing a Variable for each entry in the array as defined in 7.13. Those Variables are also used as Variables referenced by other Variables.

SessionsDiagnosticsSummary contains diagnostic information per session, as defined in 6.3.4.

EnabledFlag identifies whether or not diagnostic information is collected by the server. It can also be used by a client to enable or disable the collection of diagnostic information of the server. The following settings of the Boolean value apply: TRUE indicates that the server collects diagnostic information, and setting the value to TRUE leads to resetting and enabling the collection. FALSE indicates that no statistic information is collected, and setting the value to FALSE disables the collection without resetting the statistic values.
Static diagnostic Nodes that always appear in the AddressSpace will return BAD_NOTREADABLE when they are read or subscribed to
and
diagnostics are turned off. Dynamic diagnostic Nodes (like the session Nodes) will not appear in the AddressSpace when diagnostics are turned off.
6.3.4 SessionsDiagnosticsSummaryType

This ObjectType defines diagnostic information about the sessions of the OPC UA server. This ObjectType is formally defined in Table 11.

Table 11 – SessionsDiagnosticsSummaryType Definition

	Attribute
	Value

	BrowseName
	SessionsDiagnosticsSummaryType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType / TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

	HasComponent
	Variable
	SessionDiagnosticsArray
	SessionDiagnosticsDataType[]

SessionDiagnosticsArrayType
	Mandatory

	HasComponent
	Variable
	SessionSecurityDiagnosticsArray
	SessionSecurityDiagnosticsDataType[]

SessionSecurityDiagnosticsArrayType
	Mandatory

	HasComponent
	Object
	For each session of the server one Object has to be provided

	--

SessionDiagnosticsObjectType
	--

SessionDiagnosticsArray provides an array with an entry for each session in the server having general diagnostic information about a session.

SessionSecurityDiagnosticsArray provides an array with an entry for each active session in the server having security-related diagnostic information about a session. Since this information is security-related, it should not be made accessible to all users, but only to authorised users.

For each session of the server, this Object also provides an Object representing the session. It has the ClientName of the session as BrowseName and is of the ObjectType SessionDiagnosticsObjectType, as defined in 6.3.5.

6.3.5 SessionDiagnosticsObjectType

This ObjectType defines diagnostic information about a session of the OPC UA server. This ObjectType is formally defined in Table 12.

Table 12 – SessionDiagnosticsObjectType Definition

	Attribute
	Value

	BrowseName
	SessionDiagnosticsObjectType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType / TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in 6.2

	HasComponent
	Variable
	SessionDiagnostics
	SessionDiagnosticsDataType

SessionDiagnosticsVariableType
	Mandatory

	HasComponent
	Variable
	SessionSecurityDiagnostics
	SessionSecurityDiagnosticsDataType

SessionSecurityDiagnosticsType
	Mandatory

	HasComponent
	Variable
	SubscriptionDiagnosticsArray
	SubscriptionDiagnosticsDataType[]

SubscriptionDiagnosticsArrayType
	Mandatory

SessionDiagnostics contains general diagnostic information about the session; the SessionSecurityDiagnostics Variable contains security-related diagnostic information. Because the information of the second Variable is security-related, it should not be made accessible to all users, but only to authorised users.

SubscriptionDiagnosticsArray is an array of Subscription diagnostic information per opened subscription, as defined in 12.15. Its TypeDefinitionNode is the VariableType SubscriptionDiagnosticsArrayType providing a Variable for each entry in the array, as defined in 7.13.

6.3.6 VendorServerInfoType

This ObjectType defines a placeholder Object for vendor-specific information about the OPC UA server. This ObjectType defines an empty ObjectType that has no components. It shall be subtyped by vendors to define their vendor-specific information. This ObjectType is formally defined in Table 13.

Table 13 – VendorServerInfoType Definition

	Attribute
	Value

	BrowseName
	VendorServerInfoType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

6.3.7 ServerRedundancyType

This ObjectType defines the redundancy capabilities supported by the OPC UA server. It is formally defined in Table 14.

Table 14 – ServerRedundancyType Definition

	Attribute
	Value

	BrowseName
	ServerRedundancyType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in 6.2

	HasProperty
	Variable
	RedundancySupport
	RedundancySupport
	PropertyType
	Mandatory

	HasSubtype
	ObjectType
	TransparentRedundancyType
	Defined in 6.3.8

	HasSubtype
	ObjectType
	NonTransparentRedundancyType
	Defined in 6.3.9

RedundancySupport indicates what redundancy is supported by the server. Its values are defined in 12.5.

6.3.8 TransparentRedundancyType

This ObjectType is a subtype of ServerRedundancyType and is used to identify the capabilities of the OPC UA server for server-controlled redundancy with a transparent switchover for the client. It is formally defined in Table 15.

Table 15 – TransparentRedundancyType Definition

	Attribute
	Value

	BrowseName
	TransparentRedundancyType

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ServerRedundancyType defined in 6.3.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	CurrentServerId
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	RedundantServerArray
	RedundantServerDataType[]
	PropertyType
	Mandatory

RedundancySupport is inherited from the ServerRedundancyType.

Although, in a transparent switchover scenario, all redundant servers serve under the same URI to the client, it may be required to track the exact data source on the client. Therefore, CurrentServerId contains an identifier of the currently-used server in the redundant set. This server is valid only inside a session; if a client opens several sessions, different servers of the redundant set of servers may serve it in different sessions. The value of the CurrentServerId may change due to failover or load balancing, so a client that needs to track its data source shall subscribe to this Variable.

As diagnostic information, the RedundantServerArray contains an array of available servers in the redundant set; including their service levels (see 12.7). This array may change during a session.

6.3.9 NonTransparentRedundancyType

This ObjectType is a subtype of ServerRedundancyType and is used to identify the capabilities of the OPC UA server for non-transparent redundancy. It is formally defined in Table 16.

Table 16 – NonTransparentRedundancyType Definition

	Attribute
	Value

	BrowseName
	NonTransparentRedundancyType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the ServerRedundancyType defined in 6.3.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ServerUriArray
	String[]
	PropertyType
	Mandatory

ServerUriArray is an array with the URI of all redundant servers of the OPC UA server. See Part 1 for the definition of redundancy in this specification. Since, in a non-transparent redundancy environment, the client is responsible to subscribe to the redundant servers, it might or might not open a session to one or more redundant servers of this array.

The redundancy support provided by the server is defined in the RedundancySupport (defined in the supertype). The client is allowed to access the redundant sever only as described there, however, ”hot” switchover implies the support of “warm” switchover and “warm” switchover implies the support of “cold” switchover.

If the server supports only a “cold” switchover, the ServiceLevel Variable of the Server Object should be considered to identify the primary server. In this scenario, only the primary server may be able to access the underlying system, because the underlying system may support access only from a single server. In this case, all other servers will be identified with a ServiceLevel of zero.

6.4 ObjectTypes used as EventTypes

6.4.1 General

This specification defines standard EventTypes. They are represented in the AddressSpace as ObjectTypes. The EventTypes are already defined in Part 3. The following subsections specify their representation in the AddressSpace.

6.4.2 BaseEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 17.

Table 17 – BaseEventType Definition

	Attribute
	Value

	BrowseName
	BaseEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

	HasSubtype
	ObjectType
	AuditEventType
	Defined in 6.4.3

	HasSubtype
	ObjectType
	SystemEventType
	Defined in 6.4.28

	HasSubtype
	ObjectType
	BaseModelChangeEventType
	Defined in 6.4.30

	HasSubtype
	ObjectType
	SemanticChangeEventType
	Defined in 6.4.32

	HasSubtype
	ObjectType
	EventQueueOverflowEventType
	Defined in 6.4.33

	HasProperty
	Variable
	EventId
	ByteString
	PropertyType
	Mandatory

	HasProperty
	Variable
	EventType
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	SourceNode
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	SourceName
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	Time
	UtcTime
	PropertyType
	Mandatory

	HasProperty
	Variable
	ReceiveTime
	UtcTime
	PropertyType
	Mandatory

	HasProperty
	Variable
	LocalTime
	TimeZoneInfo
	PropertyType
	Optional

	HasProperty
	Variable
	Message
	LocalizedText
	PropertyType
	Mandatory

	HasProperty
	Variable
	Severity
	UInt16
	PropertyType
	Mandatory

EventId is generated by the server to uniquely identify a particular Event Notification. The server is responsible to ensure that each Event has its unique EventId. It may do this, for example, by putting GUIDs into the ByteString. Clients can use the EventId to assist in minimizing or eliminating gaps and overlaps that may occur during a redundancy failover.

EventType describes the specific type of Event.

SourceNode identifies the Node that the Event originated from. If the Event is not specific to a Node the NodeId is set to null. Some subtypes of this BaseEventType may define additional rules for SourceNode.

SourceName provides a description of the source of the Event. This could be the DisplayName of the Event source – if the Event is specific to a Node – or some server-specific notation.

Time provides the time the Event occurred. This value is set as close to the event generator as possible. It often comes from the underlying system or device. Once set, intermediate OPC UA Servers shall not alter the value.

ReceiveTime provides the time the OPC UA Server received the Event from the underlying device of another Server. ReceiveTime is analogous to ServerTimestamp defined in Part 4, i.e. in the case where the OPC UA Server gets an Event from another OPC UA Server, each Server applies its own ReceiveTime. That implies that a Client may get the same Event – having the same EventId – from different Servers having different values of the ReceiveTime.

LocalTime is a structure containing the Offset and the DaylightSavingInOffset flag. The Offset specifies the time difference (in minutes) between the Time Property and the time at the location in which the event was issued. If DaylightSavingInOffset is TRUE, then Standard/Daylight savings time (DST) at the originating location is in effect and Offset includes the DST correction. If FALSE then the Offset does not include DST correction and DST may or may not have been in effect.

Message provides a human-readable and localizable text description of the Event. The server may return any appropriate text to describe the Event. A null string is not a valid value; if the server does not have a description, it shall return the string part of the BrowseName of the Node associated with the Event.

Severity is an indication of the urgency of the Event. This is also commonly called “priority”. Values will range from 1 to 1000, with 1 being the lowest severity and 1000 being the highest. Typically, a severity of 1 would indicate an Event which is informational in nature, while a value of 1000 would indicate an Event of catastrophic nature, which could potentially result in severe financial loss or loss of life.

It is expected that very few server implementations will support 1000 distinct severity levels. Therefore, server developers are responsible for distributing their severity levels across the 1 – 1000 range in such a manner that clients can assume a linear distribution. For example, a client wishing to present five severity levels to a user should be able to do the following mapping:

	Client Severity
	OPC Severity

	HIGH
	801 – 1000

	MEDIUM HIGH
	601 – 800

	MEDIUM
	401 – 600

	MEDIUM LOW
	201 – 400

	LOW
	1 – 200

In many cases a strict linear mapping of underlying source severities to the OPC Severity range is not appropriate. The server developer will instead intelligently map the underlying source severities to the 1 – 1000 OPC Severity range in some other fashion. In particular, it is recommended that server developers map Events of high urgency into the OPC severity range of 667 – 1000, Events of medium urgency into the OPC severity range of 334 – 666 and Events of low urgency into OPC severities of 1 – 333.

For example, if a source supports 16 severity levels that are clustered such that severities 0 – 2 are considered to be LOW, 3 – 7 are MEDIUM and 8 – 15 are HIGH, then an appropriate mapping might be as follows:

	OPC Range
	Source Severity
	OPC Severity

	HIGH (667 – 1000)
	15
	1000

	
	14
	955

	
	13
	910

	
	12
	865

	
	11
	820

	
	10
	775

	
	9
	730

	
	8
	685

	MEDIUM (334 – 666)
	7
	650

	
	6
	575

	
	5
	500

	
	4
	425

	
	3
	350

	LOW (1 – 333)
	2
	300

	
	1
	150

	
	0
	1

Some servers might not support any Events which are catastrophic in nature, so they may choose to map all of their severities into a subset of the 1 – 1000 range (for example, 1 – 666). Other servers might not support any Events which are merely informational, so they may choose to map all of their severities into a different subset of the 1 – 1000 range (for example, 334 – 1000).

The purpose of this approach is to allow clients to use severity values from multiple servers from different vendors in a consistent manner. Additional discussions of severity can be found in Part 9.

6.4.3 AuditEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 18.

Table 18 – AuditEventType Definition

	Attribute
	Value

	BrowseName
	AuditEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseEventType defined in 6.4.2, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditSecurityEventType
	Defined in 6.4.4

	HasSubtype
	ObjectType
	AuditNodeManagementEventType
	Defined in 6.4.19

	HasSubtype
	ObjectType
	AuditUpdateEventType
	Defined in 6.4.24

	HasSubtype
	ObjectType
	AuditUpdateMethodEventType
	Defined in 6.4.27

	HasProperty
	Variable
	ActionTimeStamp
	UtcTime
	PropertyType
	Mandatory

	HasProperty
	Variable
	Status
	Boolean
	PropertyType
	Mandatory

	HasProperty
	Variable
	ServerId
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientAuditEntryId
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientUserId
	String
	PropertyType
	Mandatory

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2.

ActionTimeStamp identifies the time the user initiated the action that resulted in the AuditEvent being generated. It differs from the Time Property because this is the time the server generated the AuditEvent documenting the action.
Status identifies whether the requested action could be performed (set Status to TRUE) or not (set Status to FALSE).

ServerId uniquely identifies the server generating the Event. It identifies the server uniquely even in a server-controlled transparent redundancy scenario where several servers may use the same URI.

ClientAuditEntryId contains the human-readable AuditEntryId defined in Part 3.

The ClientUserId identifies the user of the client requesting an action. The ClientUserId can be obtained from the UserIdentityToken passed in the ActivateSession call. This token can contain the information in multiple formats depending on the type of User Identity that is passed to the service. If the UserIdentityToken that was passed was defined as a UserName, then the structure contains an explicit string that is the user. If the passed UserIdentityToken was defined as X509v3, then the CertificateData byte string contains an element that is the user string which can be extracted from the subject key in this structure. If the passed UserIdentityToken was defined as WSS, then the user string can be extracted from the WS-Security XML token. If an AnonymousIdentityToken was used, the value is null.

6.4.4 AuditSecurityEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 19.

Table 19 – AuditSecurityEventType Definition

	Attribute
	Value

	BrowseName
	AuditSecurityEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditEventType defined in 6.4.3, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditChannelEventType
	Defined in 6.4.5

	HasSubtype
	ObjectType
	AuditSessionEventType
	Defined in 6.4.7

	HasSubtype
	ObjectType
	AuditCertificateEventType
	Defined in 6.4.12

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3. There are no additional Properties defined for this EventType.

6.4.5 AuditChannelEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 20.

Table 20 – AuditChannelEventType Definition

	Attribute
	Value

	BrowseName
	AuditChannelEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditSecurityEventType defined in 6.4.4, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditOpenSecureChannelEventType
	Defined in 6.4.6

	HasProperty
	Variable
	SecureChannelId
	String
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSecurityEventType. Their semantic is defined in 6.4.4. There are no additional Properties defined for this EventType. The SourceNode for Events of this type should be assigned to the Server Object. The SourceName for Events of this type should be “SecureChannel/” and the Service that generates the Event (e.g. SecureChannel/OpenSecureChannel or SecureChannel/CloseSecureChannel). If the ClientUserId is not available for a CloseSecureChannel call, then this parameter shall be set to ‘System/CloseSecureChannel’.

The SecureChannelId shall uniquely identify the SecureChannel. The application shall use the same identifier in all AuditEvents related to the Session Service Set (AuditSessionEventType and its subtypes) and the SecureChannel Service Set (AuditChannelEventType and its subtypes).

6.4.6 AuditOpenSecureChannelEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 21.

Table 21 – AuditOpenSecureChannelEventType Definition

	Attribute
	Value

	BrowseName
	AuditOpenSecureChannelEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the AuditChannelEventType defined in 6.4.5, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ClientCertificate
	ByteString
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientCertificateThumbprint
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	RequestType
	SecurityTokenRequestType
	PropertyType
	Mandatory

	HasProperty
	Variable
	SecurityPolicyUri
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	SecurityMode
	MessageSecurityMode
	PropertyType
	Mandatory

	HasProperty
	Variable
	RequestedLifetime
	Duration
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditChannelEventType. Their semantic is defined in 6.4.5. The SourceName for Events of this type should be “SecureChannel/OpenSecureChannel”. The ClientUserId is not available for this call, thus this parameter shall be set to ‘System/OpenSecureChannel’

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

ClientCertificate is the clientCertificate parameter of the OpenSecureChannel Service call.

ClientCertificateThumbprint is a thumbprint of the ClientCertificate.
RequestType is the requestType parameter of the OpenSecureChannel Service call.

SecurityPolicyUri is the securityPolicyUri parameter of the OpenSecureChannel Service call.

SecurityMode is the securityMode parameter of the OpenSecureChannel Service call.

RequestedLifetime is the requestedLifetime parameter of the OpenSecureChannel Service call.

6.4.7 AuditSessionEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 22.

Table 22 – AuditSessionEventType Definition

	Attribute
	Value

	BrowseName
	AuditSessionEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditEventType defined in 6.4.4, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditCreateSessionEventType
	Defined in 6.4.8

	HasSubtype
	ObjectType
	AuditActivateSessionEventType
	Defined in 6.4.10

	HasSubtype
	ObjectType
	AuditCancelEventType
	Defined in 6.4.11

	HasProperty
	Variable
	SessionId
	NodeId
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.4. There are no additional Properties defined for this EventType.

If the Event is generated by a TransferSubscriptions Service call, the SourceNode should be assigned to the SessionDiagnostics Object that represents the session. The SourceName for Events of this type should be “Session/TransferSubscriptions”.

Otherwise, the SourceNode for Events of this type should be assigned to the Server Object. The SourceName for Events of this type should be “Session/” and the Service that generates the Event (e.g. CreateSession, ActivateSession or CloseSession).

The SessionId should contain the SessionId of the session that the Service call was issued on In the CreateSession Service this shall be set to the newly created SessionId. If no session context exists (e.g. for a failed CreateSession Service call) the SessionId is set to NULL.

6.4.8 AuditCreateSessionEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 23.

Table 23 – AuditCreateSessionEventType Definition

	Attribute
	Value

	BrowseName
	AuditCreateSessionEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditSessionEventType defined in 6.4.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditUrlMismatchEventType
	Defined in 6.4.9

	HasProperty
	Variable
	SecureChannelId
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientCertificate
	ByteString
	PropertyType
	Mandatory

	HasProperty
	Variable
	ClientCertificateThumbprint
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	RevisedSessionTimeout
	Duration
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined in 6.4.7. The SourceName for Events of this type should be “Session/CreateSession”. The ClientUserId is not available for this call thus this parameter shall be set to the ‘System/CreateSession’.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

SecureChannelId shall uniquely identify the SecureChannel. The application shall use the same identifier in all AuditEvents related to the Session Service Set (AuditSessionEventType and its subtypes) and the SecureChannel Service Set (AuditChannelEventType and its subtypes).

ClientCertificate is the clientCertificate parameter of the CreateSession Service call.

ClientCertificateThumbprint is a thumbprint of the ClientCertificate.
RevisedSessionTimeout is the returned revisedSessionTimeout parameter of the CreateSession Service call.

6.4.9 AuditUrlMismatchEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 23.

Table 24 – AuditUrlMismatchEventType Definition

	Attribute
	Value

	BrowseName
	AuditUrlMismatchEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCreateSessionEventType defined in 6.4.8, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	EndpointUrl
	String
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined in 6.4.8.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

EndpointUrl is the endpointUrl parameter of the CreateSession Service call.

6.4.10 AuditActivateSessionEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 25.

Table 25 – AuditActivateSessionEventType Definition

	Attribute
	Value

	BrowseName
	AuditActivateSessionEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditSessionEventType defined in 6.4.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ClientSoftwareCertificates
	SignedSoftwareCertificate[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	UserIdentityToken
	UserIdentityToken
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined in 6.4.7. The SourceName for Events of this type should be “Session/ActivateSession”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

ClientSoftwareCertificates is the clientSoftwareCertificates parameter of the ActivateSession Service call.

UserIdentityToken reflects the userIdentityToken parameter of the ActivateSession Service call. For Username/Password tokens the password should NOT be included.

6.4.11 AuditCancelEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 26.

Table 26 – AuditCancelEventType Definition

	Attribute
	Value

	BrowseName
	AuditCancelEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditSessionEventType defined in 6.4.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	RequestHandle
	UInt32
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSessionEventType. Their semantic is defined in 6.4.7. The SourceName for Events of this type should be “Session/Cancel”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

RequestHandle is the requestHandle parameter of the Cancel Service call.

6.4.12 AuditCertificateEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 27.

Table 27 – AuditCertificateEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditSecurityEventType defined in 6.4.7, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditCertificateDataMismatchEventType
	Defined in 6.4.13

	HasSubtype
	ObjectType
	AuditCertificateExpiredEventType
	Defined in 6.4.14

	HasSubtype
	ObjectType
	AuditCertificateInvalidEventType
	Defined in 6.4.15

	HasSubtype
	ObjectType
	AuditCertificateUntrustedEventType
	Defined in 6.4.16

	HasSubtype
	ObjectType
	AuditCertificateRevokedEventType
	Defined in 6.4.17

	HasSubtype
	ObjectType
	AuditCertificateMismatchEventType
	Defined in 6.4.18

	HasProperty
	Variable
	Certificate
	ByteString
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditSecurityEventType. Their semantic is defined in 6.4.4. The SourceName for Events of this type should be “Security/Certificate”.

Certificate is the certificate that encountered a validation issue. Additional subtypes of this EventType will be defined representing the individual validation errors. This certificate can be matched to the service that passed it (Session or SecureChannel Service Set) since the AuditEvents for these Services also included the Certificate.

6.4.13 AuditCertificateDataMismatchEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 28.

Table 28 – AuditCertificateDataMismatchEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateDataMismatchEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	InvalidHostname
	String
	PropertyType
	Mandatory

	HasProperty
	Variable
	InvalidUri
	String
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”.

InvalidHostname is the string that represents the host name passed in as part of the URL that is found to be invalid. If the host name was not invalid it can be NULL.

InvalidUri is the URI that was passed in and found to not match what is contained in the certificate. If the URI was not invalid it can be NULL.

Either the InvalidHostname or InvalidUri shall be provided.

6.4.14 AuditCertificateExpiredEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 29.

Table 29 – AuditCertificateExpiredEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateExpiredEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”. The Message Variable shall include a description of why the certificate was expired (i.e. time before start or time after end). There are no additional Properties defined for this EventType.

6.4.15 AuditCertificateInvalidEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 30.

Table 30 – AuditCertificateInvalidEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateInvalidEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”. The Message shall include a description of why the certificate is invalid. There are no additional Properties defined for this EventType.

6.4.16 AuditCertificateUntrustedEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 31.

Table 31 – AuditCertificateUntrustedEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateUntrustedEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”. The Message Variable shall include a description of why the certificate is not trusted. If a trust chain is involved then the certificate that failed in the trust chain should be described. There are no additional Properties defined for this EventType.

6.4.17 AuditCertificateRevokedEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 32.

Table 32 – AuditCertificateRevokedEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateRevokedEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”. The Message Variable shall include a description of why the certificate is revoked (was the revocation list unavailable or was the certificate on the list). There are no additional Properties defined for this EventType.

6.4.18 AuditCertificateMismatchEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 33.

Table 33 – AuditCertificateMismatchEventType Definition

	Attribute
	Value

	BrowseName
	AuditCertificateMismatchEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditCertificateEventType defined in 6.4.12, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the AuditCertificateEventType. Their semantic is defined in 6.4.12. The SourceName for Events of this type should be “Security/Certificate”. The Message Variable shall include a description of the certificated misuse. There are no additional Properties defined for this EventType.

6.4.19 AuditNodeManagementEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 34.

Table 34 – AuditNodeManagementEventType Definition

	Attribute
	Value

	BrowseName
	AuditNodeManagementEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditEventType defined in 6.4.3, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditAddNodesEventType
	

	HasSubtype
	ObjectType
	AuditDeleteNodesEventType
	

	HasSubtype
	ObjectType
	AuditAddReferencesEventType
	

	HasSubtype
	ObjectType
	AuditDeleteReferencesEventType
	

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3. There are no additional Properties defined for this EventType. The SourceNode for Events of this type should be assigned to the Server Object. The SourceName for Events of this type should be “NodeManagement/” and the Service that generates the Event (e.g. AddNodes, AddReferences, DeleteNodes, DeleteReferences).

6.4.20 AuditAddNodesEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 35.

Table 35 – AuditAddNodesEventType Definition

	Attribute
	Value

	BrowseName
	AuditAddNodesEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditNodeManagementEventType defined in 6.4.19, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	NodesToAdd
	AddNodesItem[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic is defined in 6.4.19. The SourceName for Events of this type should be “NodeManagement/AddNodes”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

NodesToAdd is the NodesToAdd parameter of the AddNodes Service call.

6.4.21 AuditDeleteNodesEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 36.

Table 36 – AuditDeleteNodesEventType Definition

	Attribute
	Value

	BrowseName
	AuditDeleteNodesEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditNodeManagementEventType defined in 6.4.19, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	NodesToDelete
	DeleteNodesItem[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic is defined in 6.4.19. The SourceName for Events of this type should be “NodeManagement/DeleteNodes”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

NodesToDelete is the nodesToDelete parameter of the DeleteNodes Service call.

6.4.22 AuditAddReferencesEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 37.

Table 37 – AuditAddReferencesEventType Definition

	Attribute
	Value

	BrowseName
	AuditAddReferencesEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditNodeManagementEventType defined in 6.4.19, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ReferencesToAdd
	AddReferencesItem[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic is defined in 6.4.19. The SourceName for Events of this type should be “NodeManagement/AddReferences”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

ReferencesToAdd is the referencesToAdd parameter of the AddReferences Service call.

6.4.23 AuditDeleteReferencesEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 38.

Table 38 – AuditDeleteReferencesEventType Definition

	Attribute
	Value

	BrowseName
	AuditDeleteReferencesEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditNodeManagementEventType defined in 6.4.19, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ReferencesToDelete
	DeleteReferencesItem[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditNodeManagementEventType. Their semantic is defined in 6.4.19. The SourceName for Events of this type should be “NodeManagement/DeleteReferences”.

The additional Properties defined for this EventType reflect parameters of the Service call that triggers the Event.

ReferencesToDelete is the referencesToDelete parameter of the DeleteReferences Service call.

6.4.24 AuditUpdateEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 39.

Table 39 – AuditUpdateEventType Definition

	Attribute
	Value

	BrowseName
	AuditUpdateEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditEventType defined in 6.4.3, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	AuditWriteUpdateEventType
	Defined in 6.4.25

	HasSubtype
	ObjectType
	AuditHistoryUpdateEventType
	Defined in 6.4.26

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3. The SourceNode for Events of this type should be assigned to the NodeId that was changed. The SourceName for Events of this type should be “Attribute/” and the Service that generated the event (e.g. Write, HistoryUpdate). Note that one Service call may generate several Events of this type, one per changed value.

6.4.25 AuditWriteUpdateEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 40.

Table 40 – AuditWriteUpdateEventType Definition

	Attribute
	Value

	BrowseName
	AuditWriteUpdateEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditUpdateEventType defined in 6.4.24 , i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	AttributeId
	UInt32
	PropertyType
	Mandatory

	HasProperty
	Variable
	IndexRange
	NumericRange
	PropertyType
	Mandatory

	HasProperty
	Variable
	NewValue
	BaseDataType
	PropertyType
	Mandatory

	HasProperty
	Variable
	OldValue
	BaseDataType
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditUpdateEventType. The SourceName for Events of this type should be “Attribute/Write”. Their semantic is defined in 6.4.24.

AttributeId identifies the Attribute that was written on the SourceNode.

IndexRange identifies the index range of the written Attribute if the Attribute is an array. If the Attribute is not an array or the whole array was written, the AttributeIndexRange is set to null.

NewValue identifies the value that was written to the SourceNode. If the AttributeIndexRange is provided, only the value of that range is shown.

OldValue identifies the value that the SourceNode contained before the write. If the AttributeIndexRange is provided, only the value of that range is shown. It is acceptable for a server that does have this information to report a null value.

Both the NewValue and the OldValue will contain a value in the DataType and encoding used for writing the value.

6.4.26 AuditHistoryUpdateEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 41.

Table 41 – AuditHistoryUpdateEventType Definition

	Attribute
	Value

	BrowseName
	AuditHistoryUpdateEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditUpdateEventType defined in 6.4.24, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	ParameterDataTypeId
	NodeId
	PropertyType
	New

This EventType inherits all Properties of the AuditUpdateEventType. Their semantic is defined in 6.4.24.

The ParameterDataTypeId identifies the DataTypeId for the extensible parameter used by the HistoryUpdate. This parameter indicates the type of HistoryUpdate being performed.

Subtypes of this EventType are defined in Part 11 representing the different possibilities to manipulate historical data.

6.4.27 AuditUpdateMethodEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 42.

Table 42 – AuditUpdateMethodEventType Definition

	Attribute
	Value

	BrowseName
	AuditUpdateMethodEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditEventType defined in 6.4.3, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	MethodId
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	InputArguments
	BaseDataType[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the AuditEventType. Their semantic is defined in 6.4.3. The SourceNode for Events of this type should be assigned to the NodeId of the object that the method resides on. The SourceName for Events of this type should be “Attribute/Call”. Note that one Service call may generate several Events of this type, one per method called. This EventType should be further subtyped to better reflect the functionality of the method and to reflect changes to the address space or updated values triggered by the method.
MethodId identifies the method that was called.

InputArguments identifies the input Arguments for the method. This parameter can be NULL if no input arguments where provided.

6.4.28 SystemEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 43.

Table 43 – SystemEventType Definition

	Attribute
	Value

	BrowseName
	SystemEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasSubtype
	ObjectType
	DeviceFailureEventType
	Defined in 6.4.29

	Subtype of the BaseEventType defined in 6.4.2, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2. There are no additional Properties defined for this EventType.

6.4.29 DeviceFailureEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 44.

Table 44 – DeviceFailureEventType Definition

	Attribute
	Value

	BrowseName
	DeviceFailureEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the SystemEventType defined in 6.4.28, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2. There are no additional Properties defined for this EventType.

6.4.30 BaseModelChangeEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 45.

Table 45 – BaseModelChangeEventType Definition

	Attribute
	Value

	BrowseName
	BaseModelChangeEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseEventType defined in 6.4.2, i.e. inheriting the InstanceDeclarations of that Node.

	HasSubtype
	ObjectType
	GeneralModelChangeEventType
	Defined in 6.4.31

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2. There are no additional Properties defined for this EventType. The SourceNode for Events of this type should be the Node of the View that gives the context of the changes. If the whole AddressSpace is the context, the SourceNode is set to the NodeId of the Server Object. The SourceName for Events of this type should be the String part of the BrowseName of the View; for the whole AddressSpace it should be “Server”.

6.4.31 GeneralModelChangeEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 46.

Table 46 – GeneralModelChangeEventType Definition

	Attribute
	Value

	BrowseName
	GeneralModelChangeEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseModelChangeEventType defined in 6.4.30, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	Changes
	ModelChangeStructureDataType[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the BaseModelChangeEventType. Their semantic is defined in 6.4.30.

The additional Property defined for this EventType reflects the changes that issued the ModelChangeEvent. Its structure is defined in 12.16.

6.4.32 SemanticChangeEventType

This EventType is defined in Part 3. Its representation in the AddressSpace is formally defined in Table 47.

Table 47 – SemanticChangeEventType Definition

	Attribute
	Value

	BrowseName
	SemanticChangeEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseEventType defined in 6.4.2, i.e. inheriting the InstanceDeclarations of that Node.

	HasProperty
	Variable
	Changes
	SemanticChangeStructureDataType[]
	PropertyType
	Mandatory

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2. There are no additional Properties defined for this EventType. The SourceNode for Events of this type should be the Node of the View that gives the context of the changes. If the whole AddressSpace is the context, the SourceNode is set to the NodeId of the Server Object. The SourceName for Events of this type should be the String part of the BrowseName of the View, for the whole AddressSpace it should be “Server”.

The additional Property defined for this EventType reflects the changes that issued the SemanticChangeEvent. Its structure is defined in 12.17.
6.4.33 EventQueueOverflowEventType

EventQueueOverflow Events are generated when an interal queue of a MonitoredItem subscribing for Events in the server overflows or if an underlying system indicates that one of its internal event queues overflows. Part 4 defines when the interal EventQueueOverflow Events must be generated.
The EventType for EventQueueOverflow Events is formally defined in Table 47.

Table 48 – EventQueueEventType Definition

	Attribute
	Value

	BrowseName
	EventQueueOverflowEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseEventType defined in 6.4.2, i.e. inheriting the InstanceDeclarations of that Node.

This EventType inherits all Properties of the BaseEventType. Their semantic is defined in 6.4.2. The SourceNode for Events of this type should be assigned to the NodeId of the Server Object if the queue overflow happened in the local server. Otherwise it is set to null or a meaningful NodeId that indicates the server having the queue overflow. The SourceName for Events of this type should be “Internal” if the local server had the queue overflow, otherwise it should indicate the server that had the queue overflow.
6.5 ModellingRuleType

ModellingRules are defined in Part 3. This ObjectType is used as the type for the ModellingRules. It is formally defined in Table 49.

Table 49 – ModellingRuleType Definition

	Attribute
	Value

	BrowseName
	ModellingRuleType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

	HasProperty
	Variable
	NamingRule
	NamingRuleType
	PropertyType
	Mandatory

The Property NamingRule identifies the NamingRule of a ModellingRule as defined in Part 3.
6.6 FolderType

Instances of this ObjectType are used to organise the AddressSpace into a hierarchy of Nodes. They represent the root Node of a subtree, and have no other semantics associated with them. However, the DisplayName of an instance of the FolderType, such as “ObjectTypes”, should imply the semantics associated with the use of it. There are no References specified for this ObjectType. It is formally defined in Table 50.

Table 50 – FolderType Definition

	Attribute
	Value

	BrowseName
	FolderType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

6.7 DataTypeEncodingType

DataTypeEncodings are defined in Part 3. This ObjectType is used as type for the DataTypeEncodings. There are no References specified for this ObjectType. It is formally defined in Table 51.

Table 51 – DataTypeEncodingType Definition

	Attribute
	Value

	BrowseName
	DataTypeEncodingType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

6.8 DataTypeSystemType

DataTypeSystems are defined in Part 3. This ObjectType is used as type for the DataTypeSystems. There are no References specified for this ObjectType. It is formally defined in Table 52.

Table 52 – DataTypeSystemType Definition

	Attribute
	Value

	BrowseName
	DataTypeSystemType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

6.9 AggregateFunctionType

This ObjectType defines an AggregateFunction supported by a UA server. It is formally defined in Table 53.

Table 53 – AggregateFunctionType Definition

	Attribute
	Value

	BrowseName
	AggregateFunctionType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2

For the AggregateFunctionType, the Description Attribute is mandatory. The Description Attribute provides a localized description of the AggregateFunction. Specific AggregateFunctions may be defined in futher Parts of this Specification.
7 Standard VariableTypes

7.1 General

Typically, the components of a complex VariableType are fixed and can be extended by subtyping. However, because each Variable of a VariableType can be extended with additional components this specification allows the extension of the standard VariableTypes defined in this document with additional components. This allows the expression of additional information in the type definition that would be contained in each Variable anyway. However, it is not allowed to restrict the components of the standard VariableTypes defined in this part. An example of extending VariableTypes would be putting the standard Property NodeVersion, defined in Part 3, into the BaseDataVariableType, stating that each DataVariable of the server will provide a NodeVersion.

7.2 BaseVariableType

The BaseVariableType is the abstract base type for all other VariableTypes. However, only the PropertyType and the BaseDataVariableType directly inherit from this type.

There are no References, except for HasSubtype References, specified for this VariableType. It is formally defined in Table 54.

Table 54 – BaseVariableType Definition

	Attribute
	Value

	BrowseName
	BaseVariableType

	IsAbstract
	True

	ValueRank
	-2 (-2 = Any)

	DataType
	BaseDataType

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasSubtype
	VariableType
	PropertyType
	Defined in 7.3

	HasSubtype
	VariableType
	BaseDataVariableType
	Defined in 7.4

7.3 PropertyType

The PropertyType is a subtype of the BaseVariableType. It is used as the type definition for all Properties. Properties are defined by their BrowseName and therefore they do not need a specialised type definition. It is not allowed to subtype this VariableType.

There are no References specified for this VariableType. It is formally defined in Table 55.

Table 55 – PropertyType Definition

	Attribute
	Value

	BrowseName
	PropertyType

	IsAbstract
	False

	ValueRank
	-2 (-2 = Any)

	DataType
	BaseDataType

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseVariableType defined in 7.2

7.4 BaseDataVariableType

The BaseDataVariableType is a subtype of the BaseVariableType. It is used as the type definition whenever there is a DataVariable having no more concrete type definition available. This VariableType is the base VariableType for VariableTypes of DataVariables, and all other VariableTypes of DataVariables shall either directly or indirectly inherit from it. However, it might not be possible for servers to provide all HasSubtype References from this VariableType to its subtypes, and therefore it is not required to provide this information.

There are no References except for HasSubtype References specified for this VariableType. It is formally defined in Table 56.

Table 56 – BaseDataVariableType Definition

	Attribute
	Value

	BrowseName
	BaseDataVariableType

	IsAbstract
	False

	ValueRank
	-2 (-2 = Any)

	DataType
	BaseDataType

	References
	NodeClass
	BrowseName
	Comment

	Subtype of the BaseVariableType defined in 7.2

	HasSubtype
	VariableType
	ServerVendorCapabilityType
	Defined in 7.5

	HasSubtype
	VariableType
	DataTypeDictionaryType
	Defined in 7.6

	HasSubtype
	VariableType
	DataTypeDescriptionType
	Defined in 7.7

	HasSubtype
	VariableType
	ServerStatusType
	Defined in 7.8

	HasSubtype
	VariableType
	BuildInfoType
	Defined in 7.9

	HasSubtype
	VariableType
	ServerDiagnosticsSummaryType
	Defined in 7.10

	HasSubtype
	VariableType
	SamplingIntervalDiagnosticsArrayType
	Defined in 7.11

	HasSubtype
	VariableType
	SamplingIntervalDiagnosticsType
	Defined in 7.12

	HasSubtype
	VariableType
	SubscriptionDiagnosticsArrayType
	Defined in 7.13

	HasSubtype
	VariableType
	SubscriptionDiagnosticsType
	Defined in 7.14

	HasSubtype
	VariableType
	SessionDiagnosticsArrayType
	Defined in 7.15

	HasSubtype
	VariableType
	SessionDiagnosticsVariableType
	Defined in 7.16

	HasSubtype
	VariableType
	SessionSecurityDiagnosticsArrayType
	Defined in 7.17

	HasSubtype
	VariableType
	SessionSecurityDiagnosticsType
	Defined in 7.18

7.5 ServerVendorCapabilityType

This VariableType is an abstract type whose subtypes define capabilities of the server. Vendors may define subtypes of this type. This VariableType is formally defined in Table 57.

Table 57 – ServerVendorCapabilityType Definition

	Attribute
	Value

	BrowseName
	ServerVendorCapabilityType

	IsAbstract
	True

	ValueRank
	-1 (-1 = Scalar)

	DataType
	BaseDataType

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

7.6 DataTypeDictionaryType

DataTypeDictionaries are defined in Part 3. This VariableType is used as the type for the DataTypeDictionaries. There are no References specified for this VariableType. It is formally defined in Table 58.

Table 58 – DataTypeDictionaryType Definition

	Attribute
	Value

	BrowseName
	DataTypeDictionaryType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	ByteString

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasProperty
	Variable
	DataTypeVersion
	String
	PropertyType
	Optional

	HasProperty
	Variable
	NamespaceUri
	String
	PropertyType
	Optional

The meaning of the Property DataTypeVersion is defined in Part 3. The NamespaceURI is the URI for the namespace described by the Value Attribute of the DataTypeDictionary.
7.7 DataTypeDescriptionType

DataTypeDescriptions are defined in Part 3. This VariableType is used as the type for the DataTypeDescriptions. There are no References specified for this VariableType. It is formally defined in Table 58.

Table 59 – DataTypeDescriptionType Definition

	Attribute
	Value

	BrowseName
	DataTypeDescriptionType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	ByteString

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasProperty
	Variable
	DataTypeVersion
	String
	PropertyType
	Optional

	HasProperty
	Variable
	DictionaryFragment
	ByteString
	PropertyType
	Optional

The meaning of the Properties DataTypeVersion and DictionaryFragment is defined in Part 3.
7.8 ServerStatusType

This complex VariableType is used for information about the server status. Its DataVariables reflect its DataType having the same semantic defined in 12.10. The VariableType is formally defined in Table 60.

Table 60 – ServerStatusType Definition

	Attribute
	Value

	BrowseName
	ServerStatusType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	ServerStatusDataType

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	StartTime
	UtcTime
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentTime
	UtcTime
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	State
	ServerState
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	BuildInfo1
	BuildInfo
	BuildInfoType
	Mandatory

	HasComponent
	Variable
	SecondsTillShutdown
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ShutdownReason
	LocalizedText
	BaseDataVariableType
	Mandatory

	Notes –

1) Containing Objects and Variables of these Objects and Variables are defined by their BrowseName defined in the corresponding TypeDefinitionNode. The NodeId is defined by the composed symbolic name described in 4.1.

7.9 BuildInfoType

This complex VariableType is used for information about the server status. Its DataVariables reflect its DataType having the same semantic defined in 12.4. The VariableType is formally defined in Table 61.

Table 61 – BuildInfoType Definition

	Attribute
	Value

	BrowseName
	BuildInfoType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	BuildInfo

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	ProductUri
	String
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ManufacturerName
	String
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ProductName
	String
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SoftwareVersion
	String
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	BuildNumber
	String
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	BuildDate
	UtcTime
	BaseDataVariableType
	Mandatory

7.10 ServerDiagnosticsSummaryType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its DataType having the same semantic defined in 12.9. The VariableType is formally defined in Table 62.

Table 62 – ServerDiagnosticsSummaryType Definition

	Attribute
	Value

	BrowseName
	ServerDiagnosticsSummaryType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	ServerDiagnosticsSummaryDataType

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	ServerViewCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentSessionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CumulatedSessionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SecurityRejectedSessionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RejectSessionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SessionTimeoutCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SessionAbortCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SamplingRateCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	PublishingIntervalCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentSubscriptionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CumulatedSubscriptionCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SecurityRejectedRequestsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RejectedRequestsCount
	UInt32
	BaseDataVariableType
	Mandatory

7.11 SamplingIntervalDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array, instances of this type will provide a Variable of the SamplingIntervalDiagnosticsType VariableType having the sampling rate as BrowseName. The VariableType is formally defined in Table 63.

Table 63 – SamplingIntervalDiagnosticsArrayType Definition

	Attribute
	Value

	BrowseName
	SamplingIntervalDiagnosticsArrayType

	IsAbstract
	False

	ValueRank
	1 (1 = OneDimension)

	ArrayDimensions
	{0} (0 = UnknownSize)

	DataType
	SamplingIntervalDiagnosticsDataType

	References
	NodeClass
	BrowseName
	DataType

TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	VariableType
	SamplingIntervalDiagnostics
	SamplingIntervalDiagnosticsDataType
SamplingIntervalDiagnosticsType
	ExposesItsArray

7.12 SamplingIntervalDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its DataType, having the same semantic defined in 12.8. The VariableType is formally defined in Table 64.

Table 64 – SamplingIntervalDiagnosticsType Definition

	Attribute
	Value

	BrowseName
	SamplingIntervalDiagnosticsType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	SamplingIntervalDiagnosticsDataType

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SamplingRate
	Duration
	BaseDataVariableType
	Mandatory

	
	
	
	
	
	

	HasComponent
	Variable
	SampledMonitoredItemsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MaxSampledMonitoredItemsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DisabledMonitoredItemsSamplingCount
	UInt32
	BaseDataVariableType
	Mandatory

7.13 SubscriptionDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array, instances of this type will provide a Variable of the SubscriptionDiagnosticsType VariableType having the SubscriptionId as BrowseName. The VariableType is formally defined in Table 65.

Table 65 – SubscriptionDiagnosticsArrayType Definition

	Attribute
	Value

	BrowseName
	SubscriptionDiagnosticsArrayType

	IsAbstract
	False

	ValueRank
	1 (1 = OneDimension)

	ArrayDimensions
	{0} (0 = UnknownSize)

	DataType
	SubscriptionDiagnosticsDataType

	References
	NodeClass
	BrowseName
	DataType

TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	VariableType
	SubscriptionDiagnostics
	SubscriptionDiagnosticsDataType SubscriptionDiagnosticsType
	ExposesItsArray

7.14 SubscriptionDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its DataType, having the same semantic defined in 12.15. The VariableType is formally defined in Table 66.

Table 66 – SubscriptionDiagnosticsType Definition

	Attribute
	Value

	BrowseName
	SubscriptionDiagnosticsType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	SubscriptionDiagnosticsDataType

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SessionId
	NodeId
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SubscriptionId
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	Priority
	Byte
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	PublishingInterval
	Duration
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MaxKeepAliveCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MaxNotificationsPerPublish
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentLifetimeCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MaxLifetimeCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	PublishingEnabled
	Boolean
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ModifyCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	EnableCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DisableCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RepublishRequestCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RepublishMessageRequestCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RepublishMessageCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TransferRequestCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TransferredToAltClientCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TransferredToSameClientCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	PublishRequestCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DataChangeNotificationsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	EventNotificationsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	NotificationsCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	LatePublishRequestCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentKeepAliveCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	EventQueueOverflowCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	UnacknowledgedMessageCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DiscardedMessageCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MonitoredItemCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent

	Variable
	DisabledMonitoredItemCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	MonitoringQueueOverflowCount
	UInt32
	BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	NextSequenceNumber
	UInt32

	BaseDataVariableType
	Mandatory

7.15 SessionDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array instances of this type will provide a Variable of the SessionDiagnosticsVariableType VariableType, having the SessionDiagnostics as BrowseName. Those Variables will also be referenced by the SessionDiagnostics Objects defined by their type in 6.3.5. The VariableType is formally defined in Table 67.

Table 67 – SessionDiagnosticsArrayType Definition

	Attribute
	Value

	BrowseName
	SessionDiagnosticsArrayType

	IsAbstract
	False

	ValueRank
	1 (1 = OneDimension)

	ArrayDimensions
	{0} (0 = UnknownSize)

	DataType
	SessionDiagnosticsDataType

	References
	NodeClass
	BrowseName
	DataType

TypeDefinition
	ModellingRule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SessionDiagnostics
	SessionDiagnosticsDataType

SessionDiagnosticsVariableType
	ExposesItsArray

7.16 SessionDiagnosticsVariableType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its DataType, having the same semantic defined in 12.11. The VariableType is formally defined in Table 68.

Table 68 – SessionDiagnosticsVariableType Definition

	Attribute
	Value

	BrowseName
	SessionDiagnosticsVariableType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	SessionDiagnosticsDataType

	References
	Node
Class
	BrowseName
	DataType

TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SessionId
	NodeId

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SessionName
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientDescription
	ApplicationDescription

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ServerUri
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	EndpointUrl
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	LocaleIds
	LocaleId[]

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ActualSessionTimeout
	Duration

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientConnectionTime
	UtcTime

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientLastContactTime
	UtcTime

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentSubscriptionsCount
	UInt32

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentMonitoredItemsCount
	UInt32

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentPublishRequestsInQueue
	UInt32

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CurrentPublishTimerExpirations
	UInt32

BaseDataVariableType
	Mandatory

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	
	
	
	

	

	HasComponent
	Variable
	ReadCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	HistoryReadCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	WriteCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	HistoryUpdateCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CallCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CreateMonitoredItemsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ModifyMonitoredItemsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SetMonitoringModeCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SetTriggeringCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DeleteMonitoredItemsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	CreateSubscriptionCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ModifySubscriptionCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SetPublishingModeCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	PublishCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RepublishCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TransferSubscriptionsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DeleteSubscriptionsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	AddNodesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	AddReferencesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DeleteNodesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	DeleteReferencesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	BrowseCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	BrowseNextCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TranslateBrowsePathsToNodeIdsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	QueryFirstCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	QueryNextCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	RegisterNodesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	UnregisterNodesCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TotalRequestsCount
	ServiceCounterDataType

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	UnauthorizedRequestsCount
	UInt32

BaseDataVariableType
	Mandatory

7.17 SessionSecurityDiagnosticsArrayType

This complex VariableType is used for diagnostic information. For each entry of the array instances of this type will provide a Variable of the SessionSecurityDiagnosticsType VariableType, having the SessionSecurityDiagnostics as BrowseName. Those Variables will also be referenced by the SessionDiagnostics Objects defined by their type in 6.3.5. The VariableType is formally defined in Table 69. Since this information is security related, it should not be made accessible to all users, but only to authorised users.

Table 69 – SessionSecurityDiagnosticsArrayType Definition

	Attribute
	Value

	BrowseName
	SessionSecurityDiagnosticsArrayType

	IsAbstract
	False

	ValueRank
	1 (1 = OneDimension)

	ArrayDimensions
	{0} (0 = UnknownSize)

	DataType
	SessionSecurityDiagnosticsDataType

	References
	NodeClass
	Browse

Name
	DataType

TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SessionSecurityDiagnostics
	SessionSecurityDiagnosticsDataType

SessionSecurityDiagnosticsType
	ExposesItsArray

7.18 SessionSecurityDiagnosticsType

This complex VariableType is used for diagnostic information. Its DataVariables reflect its DataType, having the same semantic defined in 12.12. The VariableType is formally defined in Table 70. Since this information is security-related, it should not be made accessible to all users, but only to authorised users.

Table 70 – SessionSecurityDiagnosticsType Definition

	Attribute
	Value

	BrowseName
	SessionSecurityDiagnosticsType

	IsAbstract
	False

	ValueRank
	-1 (-1 = Scalar)

	DataType
	SessionSecurityDiagnosticsDataType

	References
	Node
Class
	BrowseName
	DataType

TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4

	HasComponent
	Variable
	SessionId
	NodeId

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientUserIdOfSession
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientUserIdHistory
	String[]

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	AuthenticationMechanism
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	Encoding
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	TransportProtocol
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SecurityMode
	MessageSecurityMode

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	SecurityPolicyUri
	String

BaseDataVariableType
	Mandatory

	HasComponent
	Variable
	ClientCertificate
	ByteString

BaseDataVariableType
	Mandatory

8 Standard Objects and their Variables

8.1 General

Objects and Variables described in the following subclauses can be extended by additional Properties or References to other Nodes, except where it is stated in the text that it is restricted.

8.2 Objects used to organise the AddressSpace structure

8.2.1 Overview

To promote interoperability of clients and servers, the OPC UA AddressSpace is structured as a hierarchy, with the top levels standardised for all servers. Figure 1 illustrates the structure of the AddressSpace. All Objects in this figure are organised using Organizes References and have the ObjectType FolderType as type definition.

[image: image1.emf]

OPC UA Root

Reference Types

Object Types

VariableTypes

Views

Objects

Types

Server

DataTypes

Figure 1 – Standard AddressSpace Structure

The remainder of this provides descriptions of these standard Nodes and the organization of Nodes beneath them. Servers typically implement a subset of these standard Nodes, depending on their capabilities.

8.2.2 Root

This standard Object is the browse entry point for the AddressSpace. It contains a set of Organizes References that point to the other standard Objects. The “Root” Object shall not reference any other NodeClasses. It is formally defined in Table 71.

Table 71 – Root Definition

	Attribute
	Value

	BrowseName
	Root

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	Object
	Views
	Defined in 8.2.3

	Organizes
	Object
	Objects
	Defined in 8.2.4

	Organizes
	Object
	Types
	Defined in 8.2.5

8.2.3 Views

This standard Object is the browse entry point for Views. Only Organizes References are used to relate View Nodes to the “Views” standard Object. All View Nodes in the AddressSpace shall be referenced by this Node, either directly or indirectly. I.e. the “Views” Object may reference other Objects using Organizes References. Those Objects may reference additional Views. Figure 2 illustrates this. The “Views” standard Object directly references the Views “View1” and “View2” and indirectly “View3” by referencing another Object called “Engineering”.

[image: image2.emf]

Object “ Views ”

O rganizes

View “ View 1”

O rganizes

View “View2”

O rganizes

View “View3”

O rganizes

Object “Engineering”

Figure 2 – Views Organization

The “Views” Object shall not reference any other NodeClasses. The “Views” Object is formally defined in Table 72.

Table 72 – Views Definition

	Attribute
	Value

	BrowseName
	Views

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

8.2.4 Objects

This standard Object is the browse entry point for Object Nodes. Figure 3 illustrates the structure beneath this Node. Only Organizes References are used to relate Objects to the “Objects” standard Object. A View Node can be used as entry point into a subset of the AddressSpace containing Objects and Variables and thus the “Objects“ Object can also reference View Nodes using Organizes References. The intent of the “Objects” Object is that all Objects and Variables that are not used for type definitions or other organizational purposes (e.g. organizing the Views) are accessible through hierarchical References starting from this Node. However, this is not a requirement, because not all servers may be able to support this. This Object references the standard Server Object defined in 8.3.2.

[image: image3.emf]

Object “A 1 ”

O rganizes

Object “C1 ”

Variable “C 1 ”

HasProperty

Object “Server”

Object “ B 1 ”

O rganizes O rganizes O rganizes

standard Server O bject

Object “Objects”

Figure 3 – Objects Organization

The “Objects” Object shall not reference any other NodeClasses. The “Objects” Object is formally defined in Table 73.

Table 73 – Objects Definition

	Attribute
	Value

	BrowseName
	Objects

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	Object
	Server
	Defined in 8.3.2

8.2.5 Types

This standard Object Node is the browse entry point for type Nodes. Figure 1 illustrates the structure beneath this Node. Only Organizes References are used to relate Objects to the “Types” standard Object. The “Types” Object shall not reference any other NodeClasses. It is formally defined in Table 74.

Table 74 – Types Definition

	Attribute
	Value

	BrowseName
	Types

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	Object
	ObjectTypes
	Defined in 8.2.6

	Organizes
	Object
	VariableTypes
	Defined in 8.2.7

	Organizes
	Object
	ReferenceTypes
	Defined in 8.2.8

	Organizes
	Object
	DataTypes
	Defined in 8.2.9

	Organizes
	Object
	EventTypes
	Defined in 8.2.12

8.2.6 ObjectTypes

This standard Object Node is the browse entry point for ObjectType Nodes. Figure 4 illustrates the structure beneath this Node showing some of the standard ObjectTypes defined in 6. Only Organizes References are used to relate Objects and ObjectTypes to the “ObjectTypes” standard Object. The “ObjectTypes” Object shall not reference any other NodeClasses.

[image: image4.emf]

O rganizes

Object “Server Capabilities ”

HasComponent

O rganizes

Object “ObjectTypes”

HasSubtype

Object Type “Server Type”

Object Type “ Base Object Type ”

O rganizes

Object “Server Type s ”

Figure 4 – ObjectTypes Organization

The intention of the “ObjectTypes” Object is that all ObjectTypes of the server are either directly or indirectly accessible browsing HierarchicalReferences starting from this Node. However, this is not required and servers might not provide some of their ObjectTypes because they may be well-known in the industry, such as the Server Type defined in 6.3.1.

This Object also indirectly references the BaseEventType defined in 6.4.2, which is the base type of all EventTypes. Thereby it is the entry point for all EventTypes provided by the server. It is required that the server expose all its EventTypes, so a client can usefully subscribe to Events.

The “ObjectTypes” Object is formally defined in Table 75.

Table 75 – ObjectTypes Definition

	Attribute
	Value

	BrowseName
	ObjectTypes

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	ObjectType
	BaseObjectType
	Defined in 6.2

8.2.7 VariableTypes

This standard Object is the browse entry point for VariableType Nodes. Figure 5 illustrates the structure beneath this Node. Only Organizes References are used to relate Objects and VariableTypes to the “VariableTypes” standard Object. The “VariableTypes” Object shall not reference any other NodeClasses.

[image: image5.emf]

O rganizes

Variable Type “ BaseVariable Type ”

Has Sub type

Object “MyVariableT ypes ”

Variable Type “ VT _ 1 ”

O rganizes

O rganizes

Object “ Variable Types”

Variable Type “BaseDataVariableType”

HasSubtype

Figure 5 – VariableTypes Organization

The intent of the “VariableTypes” Object is that all VariableTypes of the server are either directly or indirectly accessible browsing HierarchicalReferences starting from this Node. However, this is not required and servers might not provide some of their VariableTypes, because they may be well-known in the industry, such as the “BaseVariableType” defined in 7.2.

The “VariableTypes” Object is formally defined in Table 76.

Table 76 – VariableTypes Definition

	Attribute
	Value

	BrowseName
	VariableTypes

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	VariableType
	BaseVariableType
	Defined in 7.2

8.2.8 ReferenceTypes

This standard Object is the browse entry point for ReferenceType Nodes. Figure 6 illustrates the organization of ReferenceTypes. Organizes References are used to define ReferenceTypes and Objects referenced by the “ReferenceTypes” Object. The “ReferenceTypes” Object shall not reference any other NodeClasses. See 11 for a discussion of the standard ReferenceTypes that appear beneath the “ReferenceTypes” Object.

[image: image6.emf]

O rganizes

Reference Type “ References ” Object “ MyRefTypes ”

Reference Type “ R T _ 1 ”

O rganizes

O rganizes

Object “ Reference Types”

ReferenceType “HierarchicalReferences”

HasSubtype

Has Subtype

Figure 6 – ReferenceType Definitions

Since ReferenceTypes will be used as filters in the browse Service and in queries, the server shall provide all its ReferenceTypes, directly or indirectly following hierarchical References starting from the “ReferenceTypes” Object. This means that, whenever the client follows a Reference, the server shall expose the type of this Reference in the ReferenceType hierarchy. It shall provide all ReferenceTypes so that the client would be able, following the inverse subtype of References, to come to the base References ReferenceType. It does not mean that the server shall expose the ReferenceTypes that the client has not used any Reference of.

The “ReferenceTypes” Object is formally defined in Table 77.

Table 77 – ReferenceTypes Definition

	Attribute
	Value

	BrowseName
	ReferenceTypes

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	ReferenceType
	References
	Defined in 11.1

8.2.9 DataTypes

This standard Object is the browse entry point for DataTypes that the server wishes to expose in the AddressSpace. The standard Object uses Organizes References to reference Objects of the DataTypeSystemType representing DataTypeSystems. Referenced by those Objects are DataTypeDictionaries that refer to their DataTypeDescriptions. However, it is not required to provide the DataTypeSystem Objects, and the DataTypeDictionary need not to be provided.

Because DataTypes are not related to DataTypeDescriptions using hierarchical References, DataType Nodes should be made available using Organizes References pointing either directly from the “DataTypes” Object to the DataType Nodes or using additional Folder Objects for grouping purposes. The intent is that all DataTypes of the server exposed in the AddressSpace are accessible following hierarchical References starting from the “DataTypes” Object. However, this is not required.

Figure 7 illustrates this hierarchy using the “OPC Binary” and “XML Schema” standard DataTypeSystems as examples. Other DataTypeSystems may be defined under this Object.

[image: image7.emf]

Variable “ DT Desc 1 ”

Object “DataTypes”

Variable “DTDesc1”

Variable “ OPC Dict _2 ”

Object “ OPC Binary ”

Variable “OPCDict_1”

O rganizes

HasComponent HasComponent

HasComponent HasComponent

Variable “Dev_2.xsd”

Object “XML Schema”

Variable “Dev_1.xsd”

O rganizes

HasComponent

HasComponent

Organizes

DataType “Int32”

O bject “Default Binary ”

HasEncoding

HasDescription

Figure 7 – DataTypes Organization

Each DataTypeSystem Object is related to its DataTypeDictionary Nodes using HasComponent References. Each DataTypeDictionary Node is related to its DataTypeDescription Nodes using HasComponent References. These References indicate that the DataTypeDescriptions are defined in the dictionary.

In the example, the “DataTypes” Object references the DataType “Int32” using an Organizes Reference. The DataType uses the non-hierarchical HasEncoding Reference to point to its default encoding, which references a DataTypeDescription using the non-hierarchical HasDescription Reference.

The “DataTypes” Object is formally defined in Table 78.

Table 78 – DataTypes Definition

	Attribute
	Value

	BrowseName
	DataTypes

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	Object
	OPC Binary
	Defined in 8.2.10

	Organizes
	Object
	XML Schema
	Defined in 8.2.11

	Organizes
	DataType
	BaseDataType
	Defined in 12.2

8.2.10 OPC Binary

OPC Binary is a standard DataTypeSystem defined by OPC. It is represented in the AddressSpace by an Object Node. The OPC Binary DataTypeSystem is defined in Part 3. OPC Binary uses XML to describe complex binary data values. The “OPC Binary” Object is formally defined in Table 79.
Table 79 – OPC Binary Definition

	Attribute
	Value

	BrowseName
	OPC Binary

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	DataTypeSystemType
	Defined in 6.8

8.2.11 XML Schema

XML Schema is a standard DataTypeSystem defined by the W3C. It is represented in the AddressSpace by an Object Node. XML Schema documents are XML documents whose xmlns attribute in the first line is:

schema xmlns =http://www.w3.org/1999/XMLSchema

The “XML Schema” Object is formally defined in Table 80.
Table 80 – XML Schema Definition

	Attribute
	Value

	BrowseName
	XML Schema

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	DataTypeSystemType
	Defined in 6.8

8.2.12 EventTypes

This standard Object Node is the browse entry point for EventType Nodes. Figure 8 illustrates the structure beneath this Node showing some of the standard EventTypes defined in 6. Only Organizes References are used to relate Objects and ObjectTypes to the “EventTypes” standard Object. The “EventTypes” Object shall not reference any other NodeClasses.

[image: image8.emf]

O rganizes

O rganizes

Object “Event Types”

HasSubtype

Object Type “AuditEvent Type”

Object Type “ Base Event Type ”

O rganizes

Object “ AuditEvent Type s ”

Figure 8 – EventTypes Organization

The intention of the “EventTypes” Object is that all EventTypes of the server are either directly or indirectly accessible browsing HierarchicalReferences starting from this Node. It is required that the server expose all its EventTypes, so a client can usefully subscribe to Events.

The “EventTypes” Object is formally defined in Table 81.

Table 81 – EventTypes Definition

	Attribute
	Value

	BrowseName
	ObjectTypes

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	FolderType
	Defined in 6.6

	Organizes
	ObjectType
	BaseEventType
	Defined in 6.4.2

8.3 Server Object and its containing Objects

8.3.1 General

The Server Object and its containing Objects and Variables are built in a way that the information can be gained in several ways, suitable for different kinds of clients having different requirements. Appendix A gives an overview of the design decisions made in providing the information in that way, and discusses the pros and cons of the different approaches. Figure 9 gives an overview of the containing Objects and Variables of the diagnostic information of the Server Object and where the information can be found.

The SessionsDiagnosticsSummary Object contains one Object per session and a Variable with an array with one entry per session. This array is of a complex DataType holding the diagnostic information about the session. Each Object representing a session references a complex Variable containing the information about the session using the same DataType as the array containing information about all sessions. Such a Variable also exposes all its information as Variables with simple DataTypes containing the same information as in the complex DataType. Not shown in Figure 9 is the security-related information per session, which follows the same rules.

The server provides an array with an entry per subscription containing diagnostic information about this subscription. Each entry of this array is also exposed as a complex Variable with Variables for each individual value. Each Object representing a session also provides such an array, but providing the subscriptions of the session.
The
arrays containing information about the session, the subscription or the sampling rates may be of different length for different connections with different user credentials since not all users may see all entries of the array. That also implies that the length of the array may change if the user is impersonated. Therefore servers may disallow to access an index range of the array. In this case the status BAD_xxx
should be returned.

[image: image9.emf]

HasComponent

HasComponent

Variable “Subscription Diagnostics Array”

Variable “SessionId”

HasComponent

Variable “ClientName”

Has Component

Has Component

Variable “Session1”

Object “Session1”

HasComponent

HasComponent

Object “ServerDiagnostics”

HasComponent

Object “SessionsDiagnostics Summary ””

Variable “SessionDiagnostic s Array ”

One Object per session

One array entry per sessio n , this information is also expos ed as Variable

Complex Variable contains the same information in its value as its properties

Variable “123”

Variable “PublishingRate”

Has Component

Variable “Subscription Diagnostic s Array”

HasComponent

HasComponent

One array entry for each subscription of the server , also exposed as variable

Redundant Information One array entry for each subscription of the session, also exposed as variable

Variable “123”

Variable “PublishingRate”

HasComponent

Figure 9 – Excerpt of Diagnostic Information of the Server

8.3.2 Server Object

This Object is used as the browse entry point for information about the server. The content of this Object is already defined by its type definition in 6.3.1. It is formally defined in Table 82. The Server Object serves as root notifier, i.e. its EventNotifier Attribute shall be set providing Events. All Events of the server shall be accessible subscribing to the Events of the Server Object.

Table 82 – Server Definition

	Attribute
	Value

	BrowseName
	Server

	References
	Node

Class
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasTypeDefinition
	Object

Type
	ServerType
	Defined in 6.3.1

	HasProperty
	Variable
	ServerArray
	String[]
	PropertyType
	Mandatory

	HasProperty
	Variable
	NamespaceArray
	String[]
	PropertyType
	Mandatory

	HasComponent
	Variable
	ServerStatus1
	ServerStatusDataType
	ServerStatusType
	Mandatory

	HasProperty
	Variable
	ServiceLevel
	Byte
	PropertyType
	Mandatory

	HasComponent
	Object
	ServerCapabilities1
	--
	ServerCapabilities
	Mandatory

	HasComponent
	Object
	ServerDiagnostics1
	--
	ServerDiagnosticsType
	Mandatory

	HasComponent
	Object
	VendorServerInfo
	--
	vendor-specific2
	Mandatory

	HasComponent
	Object
	ServerRedundancy1
	--
	depends on supported redundancy3
	Mandatory

	Notes –

1) Containing Objects and Variables of these Objects and Variables are defined by their BrowseName defined in the corresponding TypeDefinitionNode. The NodeId is defined by the composed symbolic name described in 4.1.

2) Shall be the VendorServerInfo ObjectType or one of its subtypes

3) Shall be the ServerRedundancyType or one of its subtypes

8.4 ModellingRule Objects

8.4.1 ExposesItsArray

The ModellingRule ExposesItsArray is defined in Part 3. Its representation in the AddressSpace – the “ExposesItsArray” Object – is formally defined in Table 83.
Table 83 – ExposesItsArray Definition

	Attribute
	Value

	BrowseName
	ExposesItsArray

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	ModellingRuleType
	Defined in 6.5

	HasProperty
	Variable
	NamingRule
	Value set to “Constraint”

8.4.2 Mandatory

The ModellingRule Mandatory is defined in Part 3. Its representation in the AddressSpace – the “Mandatory” Object – is formally defined in Table 84.
Table 84 – Mandatory Definition

	Attribute
	Value

	BrowseName
	Mandatory

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	ModellingRuleType
	Defined in 6.5

	HasProperty
	Variable
	NamingRule
	Value set to “Mandatory”

8.4.3 Optional

The ModellingRule Optional is defined in Part 3. Its representation in the AddressSpace – the “Optional” Object – is formally defined in Table 85.
Table 85 – Optional Definition

	Attribute
	Value

	BrowseName
	Optional

	References
	NodeClass
	BrowseName
	Comment

	HasTypeDefinition
	ObjectType
	ModellingRuleType
	Defined in 6.5

	HasProperty
	Variable
	NamingRule
	Value set to “Optional”

9 Standard Methods

There are no core OPC UA Methods defined.

10 Standard Views

There are no core OPC UA Views defined.

11 Standard ReferenceTypes

11.1 References

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 86.

Table 86 – References ReferenceType

	Attributes
	Value

	BrowseName
	References

	InverseName
	--

	Symmetric
	True

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HierarchicalReferences
	Defined in 11.2

	HasSubtype
	ReferenceType
	NonHierarchicalReferences
	Defined in 11.3

11.2 HierarchicalReferences

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 87.

Table 87 – HierarchicalReferences ReferenceType

	Attributes
	Value

	BrowseName
	HierarchicalReferences

	InverseName
	--

	Symmetric
	False

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HasChild
	Defined in 11.4

	HasSubtype
	ReferenceType
	Organizes
	Defined in 11.6

	HasSubtype
	ReferenceType
	HasEventSource
	Defined in 11.15

11.3 NonHierarchicalReferences

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 88.

Table 88 – NonHierarchicalReferences ReferenceType

	Attributes
	Value

	BrowseName
	NonHierarchicalReferences

	InverseName
	--

	Symmetric
	True

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HasModellingRule
	Defined in 11.11

	HasSubtype
	ReferenceType
	HasTypeDefinition
	Defined in 11.12

	HasSubtype
	ReferenceType
	HasEncoding
	Defined in 11.13

	HasSubtype
	ReferenceType
	HasDescription
	Defined in 11.14

	HasSubtype
	ReferenceType
	GeneratesEvent
	Defined in 11.17

	HasSubtype
	ReferenceType
	HasModelParent
	Defined in 11.19

11.4 HasChild

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 90.

Table 89 – HasChild ReferenceType

	Attributes
	Value

	BrowseName
	HasChild

	InverseName
	--

	Symmetric
	False

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	Aggregates
	Defined in 11.5

	HasSubtype
	ReferenceType
	HasSubtype
	Defined in 11.10

11.5 Aggregates

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 90.

Table 90 – Aggregates ReferenceType

	Attributes
	Value

	BrowseName
	Aggregates

	InverseName
	--

	Symmetric
	False

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HasComponent
	Defined in 11.7

	HasSubtype
	ReferenceType
	HasProperty
	Defined in 11.9

11.6 Organizes

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 91.

Table 91 – Organizes ReferenceType

	Attributes
	Value

	BrowseName
	Organizes

	InverseName
	OrganizedBy

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.7 HasComponent

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 92.

Table 92 – HasComponent ReferenceType

	Attributes
	Value

	BrowseName
	HasComponent

	InverseName
	ComponentOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HasOrderedComponent
	Defined in 11.8

11.8 HasOrderedComponent

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 93.

Table 93 – HasOrderedComponent ReferenceType

	Attributes
	Value

	BrowseName
	HasOrderedComponent

	InverseName
	OrderedComponentOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.9 HasProperty

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 94.

Table 94 – HasProperty ReferenceType

	Attributes
	Value

	BrowseName
	HasProperty

	InverseName
	PropertyOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.10 HasSubtype

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 95.

Table 95 – HasSubtype ReferenceType

	Attributes
	Value

	BrowseName
	HasSubtype

	InverseName
	SubtypeOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.11 HasModellingRule

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 96.

Table 96 – HasModellingRule ReferenceType

	Attributes
	Value

	BrowseName
	HasModellingRule

	InverseName
	ModellingRuleOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.12 HasTypeDefinition

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 97.

Table 97 – HasTypeDefinition ReferenceType

	Attributes
	Value

	BrowseName
	HasTypeDefinition

	InverseName
	TypeDefinitionOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.13 HasEncoding

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 97.

Table 98 – HasEncoding ReferenceType

	Attributes
	Value

	BrowseName
	HasEncoding

	InverseName
	EncodingOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.14 HasDescription

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 97.

Table 99 – HasDescription ReferenceType

	Attributes
	Value

	BrowseName
	HasDescription

	InverseName
	DescriptionOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.15 HasEventSource

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 100.

Table 100 – HasEventSource ReferenceType

	Attributes
	Value

	BrowseName
	HasEventSource

	InverseName
	EventSourceOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	HasNotifier
	Defined in 11.16

11.16 HasNotifier

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 101.

Table 101 – HasNotifier ReferenceType

	Attributes
	Value

	BrowseName
	HasNotifier

	InverseName
	NotifierOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.17 GeneratesEvent

This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 102.

Table 102 – GeneratesEvent ReferenceType

	Attributes
	Value

	BrowseName
	GeneratesEvent

	InverseName
	GeneratedBy

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	HasSubtype
	ReferenceType
	AlwaysGeneratesEvent
	Defined in Error! Reference source not found.

11.18 AlwaysGeneratesEvent
This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 102.

Table 103 – AlwaysGeneratesEvent ReferenceType

	Attributes
	Value

	BrowseName
	AlwaysGeneratesEvent

	InverseName
	AlwaysGeneratedBy

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

11.19 HasModelParent
This standard ReferenceType is defined in Part 3. Its representation in the AddressSpace is specified in Table 104.

Table 104 – HasModelParent ReferenceType

	Attributes
	Value

	BrowseName
	HasModelParent

	InverseName
	IsModelParentOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

12 Standard DataTypes

12.1 Overview

An OPC UA server need not expose its DataTypes in its AddressSpace. Independent of the exposition of DataTypes, it shall support the DataTypes as described in the following subclauses. The DataTypeEncodings, the DataTypeDescriptions and the DataTypeDictionaries of the structured DataTypes and the References to them are specified in Part 6 as well as the EnumStrings Properties for enumerated DataTypes.

12.2 DataTypes defined in Part 3
Part 3 defines a set of DataTypes. Their representation in the AddressSpace is defined in Table 105.

Table 105 – Part 3 DataType Definitions

	BrowseName

	BaseDataType

	Argument

	Boolean

	Byte

	ByteString

	DateTime

	Double

	Duration

	Enumeration

	Float

	Guid

	IdType

	SByte

	Integer

	Int16

	Int32

	Int64

	Image

	ImageBMP

	ImageGIF

	ImageJPG

	ImagePNG

	LocaleId

	LocalizedText

	NamingRuleType

	NodeClass

	NodeId

	Number

	QualifiedName

	String

	Structure

	Time

	UInteger

	UInt16

	UInt32

	UInt64

	UtcTime

	XmlElement

	TimeZoneInfo

Of the DataTypes defined in Table 105 only some are the sources of References as defined in the following tables.
The References of the BaseDataType are defined in Table 106.

Table 106 – BaseDataType Definition

	Attributes
	Value

	BrowseName
	BaseDataType

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Boolean
	FALSE

	HasSubtype
	DataType
	ByteString
	FALSE

	HasSubtype
	DataType
	DateTime
	FALSE

	HasSubtype
	DataType
	DataValue
	FALSE

	HasSubtype
	DataType
	DiagnosticInfo
	FALSE

	HasSubtype
	DataType
	Enumeration
	TRUE

	HasSubtype
	DataType
	ExpandedNodeId
	FALSE

	HasSubtype
	DataType
	Guid
	FALSE

	HasSubtype
	DataType
	LocalizedText
	FALSE

	HasSubtype
	DataType
	NodeId
	FALSE

	HasSubtype
	DataType
	Number
	TRUE

	HasSubtype
	DataType
	QualifiedName
	FALSE

	HasSubtype
	DataType
	String
	FALSE

	HasSubtype
	DataType
	Structure
	TRUE

	HasSubtype
	DataType
	XmlElement
	FALSE

The References of Structure are defined in Table 107.

Table 107 – Structure Definition

	Attributes
	Value

	BrowseName
	Structure

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Argument
	FALSE

	HasSubtype
	DataType
	UserIdentityToken
	TRUE

	HasSubtype
	DataType
	AddNodesItem
	FALSE

	HasSubtype
	DataType
	AddReferencesItem
	FALSE

	HasSubtype
	DataType
	DeleteNodesItem
	FALSE

	HasSubtype
	DataType
	DeleteReferencesItem
	FALSE

	HasSubtype
	DataType
	ApplicationDescription
	FALSE

	HasSubtype
	DataType
	BuildInfo
	FALSE

	HasSubtype
	DataType
	RedundantServerDataType
	FALSE

	HasSubtype
	DataType
	SamplingIntervalDiagnosticsDataType
	FALSE

	HasSubtype
	DataType
	ServerDiagnosticsSummaryDataType
	FALSE

	HasSubtype
	DataType
	ServerStatusDataType
	FALSE

	HasSubtype
	DataType
	SessionDiagnosticsDataType
	FALSE

	HasSubtype
	DataType
	SessionSecurityDiagnosticsDataType
	FALSE

	HasSubtype
	DataType
	ServiceCounterDataType
	FALSE

	HasSubtype
	DataType
	StatusResult
	FALSE

	HasSubtype
	DataType
	SubscriptionDiagnosticsDataType
	FALSE

	HasSubtype
	DataTypes
	ModelChangeStructureDataType
	FALSE

	HasSubtype
	DataTypes
	SemanticChangeStructureDataType
	FALSE

	HasSubtype
	DataType
	SignedSoftwareCertificate
	FALSE

	HasSubtype
	DataType
	TimeZoneInfo
	FALSE

The References of Enumeration are defined in Table 108.

Table 108 – Enumeration Definition

	Attributes
	Value

	BrowseName
	Enumeration

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	IdType
	FALSE

	HasSubtype
	DataType
	NamingRuleType
	FALSE

	HasSubtype
	DataType
	NodeClass
	FALSE

	HasSubtype
	DataType
	SecurityTokenRequestType
	FALSE

	HasSubtype
	DataType
	MessageSecurityMode
	FALSE

	HasSubtype
	DataType
	RedundancySupport
	FALSE

	HasSubtype
	DataType
	ServerState
	FALSE

The References of ByteString are defined in Table 109.

Table 109 – ByteString Definition

	Attributes
	Value

	BrowseName
	ByteString

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Image
	TRUE

The References of Number are defined in Table 110.

Table 110 – Number Definition

	Attributes
	Value

	BrowseName
	Number

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Integer
	TRUE

	HasSubtype
	DataType
	UInteger
	TRUE

	HasSubtype
	DataType
	Double
	FALSE

	HasSubtype
	DataType
	Float
	FALSE

The References of Double are defined in Table 111.

Table 111 – Double Definition

	Attributes
	Value

	BrowseName
	Double

	IsAbstract
	FALSE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Duration
	FALSE

The References of Integer are defined in Table 112.

Table 112 – Integer Definition

	Attributes
	Value

	BrowseName
	Integer

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	SByte
	FALSE

	HasSubtype
	DataType
	Int16
	FALSE

	HasSubtype
	DataType
	Int32
	FALSE

	HasSubtype
	DataType
	Int64
	FALSE

The References of DateTime are defined in Table 113.

Table 113 – DateTime Definition

	Attributes
	Value

	BrowseName
	DateTime

	IsAbstract
	FALSE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	UtcTime
	FALSE

The References of String are defined in Table 112.

Table 114 – String Definition

	Attributes
	Value

	BrowseName
	String

	IsAbstract
	FALSE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	LocaleId
	FALSE

	HasSubtype
	DataType
	NumericRange
	FALSE

The References of UInteger are defined in Table 115.

Table 115 – UInteger Definition

	Attributes
	Value

	BrowseName
	UInteger

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	Byte
	FALSE

	HasSubtype
	DataType
	UInt16
	FALSE

	HasSubtype
	DataType
	UInt32
	FALSE

	HasSubtype
	DataType
	UInt64
	FALSE

The References of Image are defined in Table 116.

Table 116 – Image Definition

	Attributes
	Value

	BrowseName
	Image

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	ImageBMP
	FALSE

	HasSubtype
	DataType
	ImageGIF
	FALSE

	HasSubtype
	DataType
	ImageJPG
	FALSE

	HasSubtype
	DataType
	ImagePNG
	FALSE

12.3 DataTypes defined in Part 4
Part 4 defines a set of DataTypes. Their representation in the AddressSpace is defined in Table 117.

Table 117 – Part 4 DataType Definitions

	BrowseName

	AnonymousIdentityToken

	DataValue

	DiagnosticInfo

	ExpandedNodeId

	SignedSoftwareCertificate

	UserIdentityToken

	UserNameIdentityToken

	X509IdentityToken

	WssIdentityToken

	SecurityTokenRequestType

	AddNodesItem

	AddReferencesItem

	DeleteNodesItem

	DeleteReferencesItem

	NumericRange

	MessageSecurityMode

	ApplicationDescription

The SecurityTokenRequestType is an enumeration that is defined as the type of the requestType parameter of the OpenSecureChannel Service in Part 4.

The AddNodesItem is a structure that is defined as the type of the nodesToAdd parameter of the AddNodes Service in Part 4.

The AddReferencesItem is a structure that is defined as the type of the referencesToAdd parameter of the AddReferences Service in Part 4.

The DeleteNodesItem is a structure that is defined as the type of the nodesToDelete parameter of the DeleteNodes Service in Part 4.

The DeleteReferencesItem is a structure that is defined as the type of the referencesToDelete parameter of the DeleteReferences Service in Part 4.

The References of UserIdentityToken are defined in Table 118.

Table 118 – UserIdentityToken Definition

	Attributes
	Value

	BrowseName
	UserIdentityToken

	IsAbstract
	TRUE

	References
	NodeClass
	BrowseName
	IsAbstract

	HasSubtype
	DataType
	UserNameIdentityToken
	FALSE

	HasSubtype
	DataType
	X509IdentityToken
	FALSE

	HasSubtype
	DataType
	WssIdentityToken
	FALSE

	HasSubtype
	DataType
	AnonymousIdentityToken
	FALSE

12.4 BuildInfo

This structure contains elements that describe the build information of the server. Its elements are defined in Table 119.

Table 119 – BuildInfo Structure

	Name
	Type
	Description

	BuildInfo
	structure
	Information that describes the build of the software.

	
productUri
	String
	URI that identifies the software

	
manufacturerName
	String
	Name of the software manufacturer.

	
productName
	String
	Name of the software.

	
softwareVersion
	String
	Software version

	
buildNumber
	String
	Build number

	
buildDate
	UtcTime
	Date and time of the build.

Its representation in the AddressSpace is defined in Table 120.

Table 120 – BuildInfo Definition

	Attributes
	Value

	BrowseName
	BuildInfo

12.5 RedundancySupport

This DataType is an enumeration that defines the redundancy support of the server. Its values are defined in Table 121.

Table 121 – RedundancySupport Values

	Value
	Description

	NONE_0
	None means that there is no redundancy support.

	COLD_1
	Cold means that the redundant servers are operational, but do not have any subscriptions defined and do not accept requests to create one.

	WARM_2
	Warm means that the redundant servers have redundant subscriptions, but with sampling disabled.

	HOT_3
	Hot means that the redundant servers have redundant subscriptions with sampling enabled, but not reporting.

See Part 1 for a more detailed description of the different values.

Its representation in the AddressSpace is defined in Table 122.

Table 122 – RedundancySupport Definition

	Attributes
	Value

	BrowseName
	RedundancySupport

12.6 ServerState

This DataType is an enumeration that defines the execution state of the server. Its values are defined in Table 123.

Table 123 – ServerState Values

	Value
	Description

	RUNNING_0
	The server is running normally. This is the usual state for a server.

	FAILED_1
	A vendor-specific fatal error has occurred within the server. The server is no longer functioning. The recovery procedure from this situation is vendor-specific. Most Service requests should be expected to fail.

	NO_CONFIGURATION_2
	The server is running but has no configuration information loaded and therefore does not transfer data.

	SUSPENDED_3
	The server has been temporarily suspended by some vendor-specific method and is not receiving or sending data.

	SHUTDOWN_4
	The server has shut down or is in the process of shutting down. Depending on the implementation, this might or might not be visible to clients.

	TEST_5
	The server is in Test Mode. The outputs are disconnected from the real hardware, but the server will otherwise behave normally. Inputs may be real or may be simulated depending on the vendor implementation. StatusCode will generally be returned normally.

	COMMUNICATION_FAULT_6
	The server is running properly, but is having difficulty accessing data from its data sources. This may be due to communication problems or some other problem preventing the underlying device, control system, etc. from returning valid data. It may be a complete failure, meaning that no data is available, or a partial failure, meaning that some data is still available. It is expected that items affected by the fault will individually return with a BAD FAILURE status code indication for the items.

	UNKNOWN_7
	This state is used only to indicate that the OPC UA server does not know the state of underlying servers.

Its representation in the AddressSpace is defined in Table 124.

Table 124 – ServerState Definition

	Attributes
	Value

	BrowseName
	ServerState

12.7 RedundantServerDataType

This structure contains elements that describe the status of the server. Its composition is defined in Table 125.

Table 125 – RedundantServerDataType Structure

	Name
	Type
	Description

	RedundantServerDataType
	structure
	

	
serverId
	String
	The Id of the server (not the URI).

	
serviceLevel
	Byte
	The service level of the server

	
serverState
	ServerState
	The current state of the server.

Its representation in the AddressSpace is defined in Table 126.

Table 126 – RedundantServerDataType Definition

	Attributes
	Value

	BrowseName
	RedundantServerDataType

12.8 SamplingIntervalDiagnosticsDataType

This structure contains diagnostic information about the sampling rates currently used by the server. Its elements are defined in Table 127.

Table 127 – SamplingIntervalDiagnosticsDataType Structure

	Name
	Type
	Description

	SamplingIntervalDiagnosticsDataType
	structure
	

	
samplingRate
	Duration
	The sampling rate in milliseconds

	
	
	

	
sampledMonitoredItemsCount
	UInt32
	The number of MonitoredItems being sampled at this sample rate.

	
maxSampledMonitoredItemsCount
	UInt32
	The maximum number of MonitoredItems being sampled at this sample rate at the same time since the server was started (restarted).

	
disabledMonitoredItemsSamplingCount
	UInt32
	The number of MonitoredItems at this sample rate whose sampling currently disabled.

Its representation in the AddressSpace is defined in Table 128.

Table 128 – SamplingIntervalDiagnosticsDataType Definition

	Attributes
	Value

	BrowseName
	SamplingIntervalDiagnosticsDataType

12.9 ServerDiagnosticsSummaryDataType

This structure contains diagnostic summary information for the server. Its elements are defined in Table 129.

Table 129 – ServerDiagnosticsSummaryDataType Structure

	Name
	Type
	Description

	ServerDiagnosticsSummaryDataType
	structure
	

	
serverViewCount
	UInt32
	The number of server-created views in the server.

	
currentSessionCount
	UInt32
	The number of client sessions currently established in the server.

	
cumulatedSessionCount
	UInt32
	The cumulative number of client sessions that have been established in the server since the server was started (or restarted). This includes the currentSessionCount.

	
securityRejectedSessionCount
	UInt32
	The number of client session establishment requests that were rejected due to security constraints since the server was started (or restarted).

	
rejectedSessionCount
	UInt32
	The number of client session establishment requests that were rejected since the server was started (or restarted). This number includes the securityRejectedSessionCount.

	
sessionTimeoutCount
	UInt32
	The number of client sessions that were closed due to timeout since the server was started (or restarted).

	
sessionAbortCount
	UInt32
	The number of client sessions that were closed due to errors since the server was started (or restarted).

	
samplingRateCount
	UInt32
	The number of sampling rates currently used in the server.

	
publishingIntervalCount
	UInt32
	The number of publishing intervals currently supported in the server.

	
currentSubscriptionCount
	UInt32
	The number of subscriptions currently established in the server.

	
cumulatedSubscriptionCount
	UInt32
	The cumulative number of subscriptions that have been established in the server since the server was started (or restarted). This includes the currentSubscriptionCount.

	
securityRejectedRequestsCount
	UInt32
	The number of requests that were rejected due to security constraints since the server was started (or restarted). The requests include all Services defined in Part 4, also requests to create sessions.

	
rejectedRequestsCount
	UInt32
	The number of requests that were rejected since the server was started (or restarted). The requests include all Services defined in Part 4, also requests to create sessions. This number includes the securityRejectedRequestsCount.

Its representation in the AddressSpace is defined in Table 130.

Table 130 – ServerDiagnosticsSummaryDataType Definition

	Attributes
	Value

	BrowseName
	ServerDiagnosticsSummaryDataType

12.10 ServerStatusDataType

This structure contains elements that describe the status of the server. Its composition is defined in Table 131.

Table 131 – ServerStatusDataType Structure

	Name
	Type
	Description

	ServerStatusDataType
	structure
	

	
startTime
	UtcTime
	Time (UTC) the server was started. This is constant for the server instance and is not reset when the server changes state. Each instance of a server should keep the time when the process started.

	
currentTime
	UtcTime
	The current time (UTC) as known by the server.

	
state
	ServerState
	The current state of the server. Its values are defined in 12.6.

	
buildInfo
	BuildInfo
	

	
secondsTillShutdown
	UInt32
	Approximate number of seconds until the server will be shut down. The value is only relevant once the state changes into SHUTDOWN.

	
shutdownReason
	LocalizedText
	An optional localized text indicating the reason for the shutdown. The value is only relevant once the state changes into SHUTDOWN.

Its representation in the AddressSpace is defined in Table 132.

Table 132 – ServerStatusDataType Definition

	Attributes
	Value

	BrowseName
	ServerStatusDataType

12.11 SessionDiagnosticsDataType

This structure contains diagnostic information about client sessions. Its elements are defined in Table 133. Most of the values represented in this structure provide information about the number of calls of a Service, the number of currently used MonitoredItems, etc. Those numbers need not provide the exact value; they need only provide the approximate number, so that the server is not burdened with providing the exact numbers.

Table 133 – SessionDiagnosticsDataType Structure

	Name
	Type
	Description

	SessionDiagnosticsDataType
	structure
	

	
sessionId
	NodeId
	Server-assigned identifier of the session.

	
sessionName
	String
	The name of the session provided in the CreateSession request.

	
clientDesription
	Application

Description
	The description provided by the client in the CreateSession request.

	
serverUri
	String
	The serverUri request in the CreateSession request.

	
endpointUrl
	String
	The endpointUrl passed by the client to the CreateSession request.

	
localeIds
	LocaleId[]
	Array of LocaleIds specified by the client in the open session call.

	
actualSessionTimeout
	Duration
	The requested session timeout specified by the client in the open session call.

	
clientConnectionTime
	UtcTime
	The server timestamp when the client opens the session.

	
clientLastContactTime
	UtcTime
	The server timestamp of the last request of the client in the context of the session.

	
currentSubscriptionsCount
	UInt32
	The number of subscriptions currently used by the session.

	
currentMonitoredItemsCount
	UInt32
	The number of MonitoredItems currently used by the session

	
currentPublishRequestsInQueue
	UInt32
	The number of publish requests currently in the queue for the session.

	
currentPublishTimerExpirations
	UInt32
	The number of publish timer expirations when there are data to be sent, but there are no publish requests for this session. The value shall be 0 if there are no data to be sent or publish requests queued.

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
readCount
	ServiceCounter
DataType
	Counter of the Read Service, identifying the number of received requests of this Service on the session.

	
historyReadCount
	ServiceCounter
DataType
	Counter of the HistoryRead Service, identifying the number of received requests of this Service on the session.

	
writeCount
	ServiceCounter
DataType
	Counter of the Write Service, identifying the number of received requests of this Service on the session.

	
historyUpdateCount
	ServiceCounter
DataType
	Counter of the HistoryUpdate Service, identifying the number of received requests of this Service on the session.

	
callCount
	ServiceCounter
DataType
	Counter of the Call Service, identifying the number of received requests of this Service on the session.

	
createMonitoredItemsCount
	ServiceCounter
DataType
	Counter of the CreateMonitoredItem Service, identifying the number of received requests of this Service on the session.

	
modifyMonitoredItemsCount
	ServiceCounter
DataType
	Counter of the ModifyMonitoredItem Service, identifying the number of received requests of this Service on the session.

	
setMonitoringModeCount
	ServiceCounter
DataType
	Counter of the SetMonitoringMode Service, identifying the number of received requests of this Service on the session.

	
setTriggeringCount
	ServiceCounter
DataType
	Counter of the SetTriggering Service, identifying the number of received requests of this Service on the session.

	
deleteMonitoredItemsCount
	ServiceCounter
DataType
	Counter of the DeleteMonitoredItems Service, identifying the number of received requests of this Service on the session.

	
createSubscriptionCount
	ServiceCounter
DataType
	Counter of the CreateSubscription Service, identifying the number of received requests of this Service on the session.

	
modifySubscriptionCount
	ServiceCounter
DataType
	Counter of the ModifySubscription Service, identifying the number of received requests of this Service on the session.

	
setPublishingModeCount
	ServiceCounter
DataType
	Counter of the SetPublishingMode Service, identifying the number of received requests of this Service on the session.

	
publishCount
	ServiceCounter
DataType
	Counter of the Publish Service, identifying the number of received requests of this Service on the session.

	
republishCount
	ServiceCounter
DataType
	Counter of the Republish Service, identifying the number of received requests of this Service on the session.

	
transferSubscriptionsCount
	ServiceCounter
DataType
	Counter of the TransferSubscriptions Service, identifying the number of received requests of this Service on the session.

	
deleteSubscriptionsCount
	ServiceCounter
DataType
	Counter of the DeleteSubscriptions Service, identifying the number of received requests of this Service on the session.

	
addNodesCount
	ServiceCounter
DataType
	Counter of the AddNodes Service, identifying the number of received requests of this Service on the session.

	
addReferencesCount
	ServiceCounter
DataType
	Counter of the AddReferences Service, identifying the number of received requests of this Service on the session.

	
deleteNodesCount
	ServiceCounter
DataType
	Counter of the DeleteNodes Service, identifying the number of received requests of this Service on the session.

	
deleteReferencesCount
	ServiceCounter
DataType
	Counter of the DeleteReferences Service, identifying the number of received requests of this Service on the session.

	
browseCount
	ServiceCounter
DataType
	Counter of the Browse Service, identifying the number of received requests of this Service on the session.

	
browseNextCount
	ServiceCounter
DataType
	Counter of the BrowseNext Service, identifying the number of received requests of this Service on the session.

	
translateBrowsePathsToNodeIdsCount
	ServiceCounter
DataType
	Counter of the TranslateBrowsePathsToNodeIds Service, identifying the number of received requests of this Service on the session.

	
queryFirstCount
	ServiceCounter
DataType
	Counter of the QueryFirst Service, identifying the number of received requests of this Service on the session.

	
queryNextCount
	ServiceCounter
DataType
	Counter of the QueryNext Service, identifying the number of received requests of this Service on the session.

	
registerNodesCount
	ServiceCounter
DataType
	Counter of the RegisterNodesCount Service, identifying the number of received requests of this Service on the session.

	
unregisterNodesCount
	ServiceCounter
DataType
	Counter of the UnregisterNodesCountService, identifying the number of received requests of this Service on the session.

	
totalRequestsCount
	ServiceCounter
DataType
	Counter of allServices, identifying the number of received requests of any Services on the session.

	
unauthorizedRequestsCount
	UInt32
	Counter of all Serices, identifying the number of Service requests that were rejected due to authorization failure

Its representation in the AddressSpace is defined in Table 134.

Table 134 – SessionDiagnosticsDataType Definition

	Attributes
	Value

	BrowseName
	SessionDiagnosticsDataType

12.12 SessionSecurityDiagnosticsDataType

This structure contains security-related diagnostic information about client sessions. Its elements are defined in Table 135. Because this information is security-related, it should not be made accessible to all users, but only to authorised users.

Table 135 – SessionSecurityDiagnosticsDataType Structure

	Name
	Type
	Description

	SessionSecurityDiagnosticsDataType
	structure
	

	
sessionId
	NodeId
	Server-assigned identifier of the session.

	
clientUserIdOfSession
	String
	Name of authenticated user when creating the session

	
clientUserIdHistory
	String[]
	Array containing the name of the authenticated user currently active (either from creating the session or from calling the ActivateSession Service) and the history of those names. Each time the active user changes, an entry shall be made at the end of the array. The active user is always at the end of the array. Servers may restrict the size of this array, but shall support at least a size of 2.

How the name of the authenticated user can by obtained from the system via the information received as part of the session establishment is defined in 6.4.3.

	
authenticationMechanism
	String
	Type of authentication (user name and password, X.509, Kerberos).

	
encoding
	String
	Which encoding is used on the wire, e.g. XML or UA Binary.

	
transportProtocol
	String
	Which transport protocol is used, e.g. TCP or HTTP.

	
securityMode
	MessageSecurityMode
	The message security mode used for the session.

	
securityPolicyUri
	String
	The name of the security policy used for the session.

	
clientCertificate
	ByteString
	The application instance certificate provided by the client in the CreateSession request.

Its representation in the AddressSpace is defined in Table 136.

Table 136 – SessionSecurityDiagnosticsDataType Definition

	Attributes
	Value

	BrowseName
	SessionSecurityDiagnosticsDataType

12.13 ServiceCounterDataType

This structure contains diagnostic information about subscriptions. Its elements are defined in Table 137.

Table 137 – ServiceCounterDataType Structure

	Name
	Type
	Description

	ServiceCounterDataType
	structure
	

	
totalCount
	UInt32
	The number of Service requests that have been received.

	
	
	

	
errorCount
	UInt32
	The total number of Service requests that were rejected. This number includes rejected requests due to authorization failure.

Its representation in the AddressSpace is defined in Table 138.

Table 138 – ServiceCounterDataType Definition

	Attributes
	Value

	BrowseName
	ServiceCounterDataType

12.14 StatusResult

This structure combines a StatusCode and diagnostic information and can for example be used by Methods to return several StatusCodes and the corresponding diagnostic information that are not handled in the Call Service parameters. The elements of this DataType are defined in Table 139. Whether the DiagnosticInformation is returned depends on the setting of the Service calls.

Table 139 – StatusResult Structure

	Name
	Type
	Description

	StatusResult
	structure
	

	
statusCode
	StatusCode
	The StatusCode.

	
diagnosticInfo
	DiagnosticInfo
	The diagnostic information for the statusCode.

Its representation in the AddressSpace is defined in Table 140.

Table 140 – StatusResult Definition

	Attributes
	Value

	BrowseName
	StatusResult

12.15 SubscriptionDiagnosticsDataType

This structure contains diagnostic information about subscriptions. Its elements are defined in Table 141.

Table 141 – SubscriptionDiagnosticsDataType Structure

	Name
	Type
	Description

	SubscriptionDiagnosticsDataType
	structure
	

	
sessionId
	NodeId
	Server-assigned identifier of the session the subscription belongs to.

	
subscriptionId
	UInt32
	Server-assigned identifier of the subscription.

	
priority
	Byte
	The priority the client assigned to the subscription.

	
publishingInterval
	Duration
	The publishing interval of the subscription in milliseconds

	
maxKeepAliveCount
	UInt32
	The maximum keep-alive count of the subscription.

	
maxNotificationsPerPublish
	UInt32
	The maximum number of notifications per publish response.

	
currentLifetimeCount
	UInt32
	The current lifetime count of the subscription.

	
maxLifetimeCount

	UInt32
	The maximum lifetime count of the subscription.

	
publishingEnabled
	Boolean
	Whether publishing is enabled for the subscription.

	
modifyCount
	UInt32
	The number of ModifySubscription requests received for the subscription.

	
enableCount
	UInt32
	The number of times the subscription has been enabled.

	
disableCount
	UInt32
	The number of times the subscription has been disabled.

	
republishRequestCount
	UInt32
	The number of Republish Service requests that have been received and processed for the subscription.

	
republishMessageRequestCount
	UInt32
	The total number of messages that have been requested to be republished for the subscription

	
republishMessageCount
	UInt32
	The number of messages that have been successfully republished for the subscription.

	
transferRequestCount
	UInt32
	The total number of TransferSubscriptions Service requests that have been received for the subscription.

	
transferredToAltClientCount
	UInt32
	The number of times the subscription has been transferred to an alternate client.

	
transferredToSameClientCount
	UInt32
	The number of times the subscription has been transferred to an alternate session for the same client.

	
publishRequestCount
	UInt32
	The number of Publish Service requests that have been received and processed for the subscription.

	
dataChangeNotificationsCount
	UInt32
	The number of data change Notifications sent by the subscription.

	
eventNotificationsCount
	UInt32
	The number of Event Notifications sent by the subscription.

	
notificationsCount
	UInt32
	The total number of Notifications sent by the subscription.

	
latePublishRequestCount
	UInt32
	The number of times the subscription has entered the LATE State, i.e. the number of times the publish timer expires and there are unsent notifications.

	
currentKeepAliveCount
	UInt32
	The number of times the subscription has entered the KEEPALIVE State.

	
eventQueueOverflowCount
	UInt32
	The number of times a monitored item in the subscription has generated an Event of type EventQueueOverflowEventType.

	
unacknowledgedMessageCount
	UInt32
	The number of unacknowledged messages saved in the queue
.

	
discardedMessageCount
	UInt32
	The number of messages that were discarded before they were acknowledged.

	
monitoredItemCount
	UInt32
	The total number of monitored items of the subscription, including the disabled monitored items.

	
disabledMonitoredItemCount
	UInt32
	The number of disabled monitored items of the subscription.

	
monitoringQueueOverflowCount
	UInt32
	The number of times a monitored item dropped notifications because of a queue overflow.

	
nextSequenceNumber
	UInt32

	Sequence number for the next notification message.

Its representation in the AddressSpace is defined in Table 142.

Table 142 – SubscriptionDiagnosticsDataType Definition

	Attributes
	Value

	BrowseName
	SubscriptionDiagnosticsDataType

12.16 ModelChangeStructureDataType

This structure contains elements that describe changes of the model. Its composition is defined in Table 143.

Table 143 – ModelChangeStructureDataType Structure

	Name
	Type
	Description

	ModelChangeStructureDataType
	structure
	

	
affected
	NodeId
	NodeId of the Node that was changed. The client should assume that the affected Node has been created or deleted, had a Reference added or deleted, or the DataType has changed as described by the verb.

	
affectedType
	NodeId
	If the affected Node was an Object or Variable, affectedType contains the NodeId of the TypeDefinitionNode of the affected Node. Otherwise it is set to null.

	
verb
	Byte
	Describes the changes happening to the affected Node.

The verb is an 8-bit unsigned integer used as bit mask with the structure defined in the following table:

Field

Bit

Description

NodeAdded

0

Indicates the affected Node has been added.

NodeDeleted

1

Indicates the affected Node has been deleted.

ReferenceAdded

2

Indicates a Reference has been added. The affected Node may be either a SourceNode or TargetNode. Note that an added bidirectional Reference is reflected by two ChangeStructures.

ReferenceDeleted

3

Indicates a Reference has been deleted. The affected Node may be either a SourceNode or TargetNode. Note that a deleted bidirectional Reference is reflected by two ChangeStructures.

DataTypeChanged

4

This verb may be used only for affected Nodes that are Variables or VariableTypes. It indicates that the DataType Attribute has changed.

Reserved

5:7

Reserved for future use. Shall always be zero.

A verb may identify several changes on the affected Node at once. This feature should be used if event compression is used (see Part 3 for details).

Note that all verbs shall always be considered in the context where the ModelChangeStructureDataType is used. A NodeDeleted may indicate that a Node was removed from a view but still exists in other Views.

Its representation in the AddressSpace is defined in Table 132.

Table 144 – ModelChangeStructureDataType Definition

	Attributes
	Value

	BrowseName
	ModelChangeStructureDataType

12.17 SemanticChangeStructureDataType

This structure contains elements that describe a change of the model. Its composition is defined in Table 145.

Table 145 – SemanticChangeStructureDataType Structure

	Name
	Type
	Description

	SemanticChangeStructureDataType
	structure
	

	
affected
	NodeId
	NodeId of the Node that owns the Property that has changed.

	
affectedType
	NodeId
	If the affected Node was an Object or Variable, affectedType contains the NodeId of the TypeDefinitionNode of the affected Node. Otherwise it is set to null.

Its representation in the AddressSpace is defined in Table 132.

Table 146 – SemanticChangeStructureDataType Definition

	Attributes
	Value

	BrowseName
	SemanticChangeStructureDataType

Appendix A (informative): Design decisions when modelling the server information

A.1 Overview

This Appendix describes the design decisions of modelling the information provided by each OPC UA server, exposing its capabilities, diagnostic information, and other data needed to work with the server, such as the NamespaceArray.

This Appendix gives an example of what should be considered when modelling data using the Address Space Model. General considerations for using the Address Space Model can be found in Appendix A of Part 3.

This Appendix is informative, that is each server vendor can model its data in the appropriate way that fits its needs.

The following subclauses describe the design decisions made while modelling the Server Object. General DataTypes, VariableTypes and ObjectTypes such as the EventTypes described in this Part are not taken into account.

A.2 ServerType and Server Object

The first decision is to decide at what level types are needed. Typically, each server will provide one Server Object with a well known NodeId. The NodeIds of the containing Nodes are also well-known because their symbolic name is specified in this part and the NodeId is based on the symbolic name in Part 6. Nevertheless, aggregating servers may want to expose the Server Objects of the OPC UA servers they are aggregating in their AddressSpace. Therefore, it is very helpful to have a type definition for the Server Object. The Server Object is an Object, because it groups a set of Variables and Objects containing information about the server. The ServerType is a complex ObjectType, because the basic structure of the Server Object should be well-defined. However, the Server Object can be extended by adding Variables and Objects in an appropriate structure of the Server Object or its containing Objects.

A.3 Typed complex Objects beneath the Server Object

Objects beneath the Server Object used to group information, such as server capabilities or diagnostics, are also typed because an aggregating server may want to provide only part of the server information, such as diagnostics information, in its AddressSpace. Clients are able to program against these structures if they are typed, because they have its type definition.

A.4 Properties vs. DataVariables

Since the general description in Part 3 about the semantic difference between Properties and DataVariables are not applicable for the information provided about the server the rules described in A.4.2 of Part 3 are used.

If simple data structures should be provided, Properties are used. Examples of Properties are the NamespaceArray of the Server Object and the MinSupportedSampleRate of the ServerCapabilities Object.

If complex data structures are used, DataVariables are used. Examples of DataVariables are the ServerStatus of the Server Object and the ServerDiagnosticsSummary of the ServerDiagnostics Object.

A.5 Complex Variables using complex DataTypes

DataVariables providing complex data structures expose their information as complex DataTypes, as well as components in the AddressSpace. This allows access to simple values as well as access to the whole information at once in a transactional context.

For example, the ServerStatus Variable of the Server Object is modelled as a complex DataVariable having the ServerStatusDataType providing all information about the server status. But it also exposes the CurrentTime as a simple DataVariable, because a client may want to read only the current time of the server, and is not interested in the build information, etc.

A.6 Complex Variables having an array

A special case of providing complex data structures is an array of complex data structures. The SubscriptionDiagnosticsArrayType is an example of how this is modelled. It is an array of a complex data structure, providing information of a subscription. Because a server typically has several subscriptions, it is an array. Some clients may want to read the diagnostic information about all subscriptions at once; therefore it is modelled as an array in a Variable. On the other hand, a client may be interested in only a single entry of the complex structure, such as the PublishRequestCount. Therefore, each entry of the array is also exposed individually as a complex DataVariable, having each entry exposed as simple data.

Note that it is never necessary to expose the individual entries of an array to access them separately. The Services already allow accessing individual entries of an array of a Variable. However, if the entries should also be used for other purposes in the AddressSpace – such as having References or additional Properties or exposing their complex structure using DataVariables – it is useful to expose them individually.

A.7 Redundant information

Providing redundant information should generally be avoided. But to fulfil the needs of different clients, it may be helpful.

Using complex DataVariables automatically leads to providing redundant information, because the information is directly provided in the complex DataType of the Value Attribute of the complex Variable, and also exposed individually in the components of the complex Variable.

The diagnostics information about subscriptions is provided in two different locations. One location is the SubscriptionDiagnosticsArray of the ServerDiagnostics Object, providing the information for all subscriptions of the server. The second location is the SubscriptionDiagnosticsArray of each individual SessionDiagnosticsObject Object, providing only the subscriptions of the session. This is useful because some clients may be interested in only the subscriptions grouped by sessions, whereas other clients may want to access the diagnostics information of all sessions at once.

The SessionDiagnosticsArray and the SessionSecurityDiagnosticsArray of the SessionsDiagnosticsSummary Object do not expose their individual entries, although they represent an array of complex data structures. But the information of the entries can also be accessed individually as components of the SessionDiagnostics Objects provided for each session by the SessionsDiagnosticsSummary Object. A client can either access the arrays (or parts of the arrays) directly or browse to the SessionDiagnostics Objects to get the information of the individual entries. Thus, the information provided is redundant, but the Variables containing the arrays do not expose their individual entries.

A.8 Usage of the BaseDataVariableType

All DataVariables used to expose complex data structures of complex DataVariables have the BaseDataVariableType as type definition if they are not complex by themselves. The reason for this approach is that the complex DataVariables already define the semantic of the containing DataVariables and this semantic is not used in another context. It is not expected that they are subtyped, because they should reflect the data structure of the DataType of the complex DataVariable.

A.9 Subtyping

Subtyping is used for modelling information about the redundancy support of the server. Because the provided information shall differ depending on the supported redundancy of the server, subtypes of the ServerRedundancyType will be used for this purpose.

Subtyping is also used as an extensibility mechanism (see next Clause).

A.10 Extensibility mechanism

The information of the server will be extended by other parts of this multi-part specification, by companion specifications or by server vendors. There are preferred ways to provide the additional information.

Do not subtype DataTypes to provide additional information about the server. Clients might not be able to read those new defined DataTypes and are not able to get the information – including the basic information. If information is added by several sources, the DataType hierarchy may be difficult to maintain. Note that this rule applies to the information about the server; in other scenarios this may be a useful way to add information.

Add Objects containing Variables or add Variables to the Objects defined in this part. If, for example, additional diagnostic information per subscription is needed, add a new Variable containing in array with an entry per subscription in the same places that the SubscriptionDiagnosticsArray is used.

Use subtypes of the ServerVendorCapabilityType to add information about the server-specific capabilities on the ServerCapabilities Objects. Because this extensibility point is already defined in this part, clients will look there for additional information.

Use a subtype of the VendorServerInfoType to add server-specific information. Because an Object of this type is already defined in this part, clients will look there for server-specific information.

Appendix B (normative): StateMachines

B.1 Scope

This Appendix describes the basic infrastructure to model state machines. It defines ObjectTypes, VariableTypes and ReferenceTypes and explains how they should be used.

This Appendix is normative, i.e. the types defined in the Appendix have to be used as defined. However, it is not required but strongly recommended that a server uses these types to expose its state machines. The defined types may be subtyped to refine their behaviour.

The scope of the state machines described in this Appendix is to provide an appropriate foundation for state machines needed by Part 9 and Part 10. It does not provide more complex functionality of a state machine like parallel states, forks and joins, history states, choices and junctions etc. However, the base state machine defined in this Appendix can be extended to support such concepts.

The following clauses describe examples of state machines, define state machines in the context of this Appendix and define the representation of state machines in OPC UA. Finally, some examples of state machines, represented in OPC UA, are given.

B.2 Examples of finite state machines

B.2.1 Simple state machine

The following example provides an overview of the base features that the state machines defined in this Appendix will support. In the following a more complex example is given, that also supports sub-state machines.

Figure 10 gives an overview over a simple state machine. It contains the three states “State1”, “State2” and “State3”. There are transitions from “State1” to “State2”, “State2” to “State2”, etc. Some of the transitions provide additional information with regard to what causes (or triggers) the transition, e.g. the call of “Method1” for the transition from “State1” to “State2”. The effect (or action) of the transition can also be specified, e.g. the generation of an Event of the “EventType1” in the same transition. The notation used to identify the cause is simply listing it on the transition, the effect is prefixed with a “/”. More than one cause or effect are separated by a “,”. Not every transition has to have a cause or effect, for example the transition between “State2” and “State3”.

[image: image10.emf]State1

State2

State3

Method1 /EventType1

/EventType2

Method2

Figure 10 – Example of a simple state machine

For simplicity, the state machines described in this Appendix will only support causes in form of specifying Methods that have to be called and effects in form of EventTypes of Events that are generated. However, the defined infrastructure allows extending this to support additional different causes and effects.

B.2.2 State machine containing substates

Figure 11 shows an example of a state machine where “State6” is a sub-state-machine. This means, that when the overall state machine is in State6, this state can be distinguish to be in the sub-states “State7” or “State8”. Sub-state-machines can be nested, i.e. “State7” could be another sub-state-machine.

[image: image11.emf]State4

State5

State6

State7

State8

Method3

Figure 11 – Example of a state machine having a sub-machine

B.3 Definition of state machine

The infrastructure of state machines defined in this Appendix only deals with the basics of state machines needed to support Part 9 and Part 10. The intention is to keep the basic simple but extensible.

For the state machines defined in this Appendix we assume that state machines are typed and instances of a type have their states and semantics specified by the type. For some types this means that the states and transitions are fixed. For other types the states and transitions may be dynamic or unknown. A state machine where all the states are specified explicitly by the type is called a finite state machine.

Therefore we distinguish between StateMachineType and StateMachine. The StateMachineType specifies a description of the state machine – its states, transitions, etc. – whereas the StateMachine is an instance of the StateMachineType and only contains the current state.

Each StateMachine contains information about the current state. If the StateMachineType has SubStateMachines, the StateMachine also contains information about the current state of the SubStateMachines. StateMachines which have their states completely defined by the type are instances of a FiniteStateMachineType.

Each FiniteStateMachineType has one or more States. For simplicity we do not distinguish between different States like the start or the end states.

Each State can have one or more SubStateMachines.

Each FiniteStateMachineType may have one or more Transitions. A Transition is directed and points from one State to another State.

Each Transition can have one or more Causes. A Cause leads a FiniteStateMachine to change its current State from the source of the Transition to its target. In this Appendix we only specify Method calls to be Causes of Transitions. Transitions do not have to have a Cause. A Transition can always be caused by some server-internal logic that is not exposed in the AddressSpace.

Each Transition can have one or more Effects. An Effect occurs if the Transition is used to change the State of a StateMachine. In this Appendix we only specify the generation of Events to be Effects of a Transition. A Transition is not required to expose any Effects in the AddressSpace.
Although this Appendix only specifies simple concepts for state machines, the provided infrastructure is extensible. If needed, special States can be defined as well as additional Causes or Effects.

B.4 Representation of state machines in the AddressSpace

B.4.1 Overview

The types defined in this Appendix are illustrated in Figure 12. The MyFiniteStateMachineType is a minimal example which illustrates how these Types can be used to describe a StateMachine. See Part 9 and Part 10 for additional examples of StateMachines.

[image: image12.emf]CurrentState

Id

StateNumber

StateVariableType

Name

Number

Name

TransitionVariableType

Id

Number

TransitionTime

LastTransition

StateMachineType

StateType

TransitionType

TransitionNumber

FiniteStateMachineType

Effective

DisplayName

MyFiniteStateMachineType

MyState

MyTransition

MyMethod

FromState ToState

HasCause

MyEventType

GeneratesEvent

HasEffect

InitialStateType

Figure 12 – The StateMachine Information Model

B.4.2 StateMachineType

The StateMachineType is the base ObjectType for all StateMachineTypes. It defines a single Variable which represents the current state of the machine. An instance of this ObjectType shall generate an Event whenever a significant state change occurs. The Server decides which state changes are significant. Servers shall use the GeneratesEvent ReferenceType to indicate which Event(s) could be produced by the StateMachine.

Subtypes may add Methods which affect the state of the machine. The Executable Attribute is used to indicate whether the Method is valid given the current state of the machine. The generation of AuditEvents for Methods is defined in Part 4. A StateMachine may not be active. In this case, the CurrentState and LastTransition Variables shall have a status equal to Bad_StateNotActive (see Table 163).

Subtypes may add components which are instances of StateMachineTypes. These components are considered to be sub-states of the StateMachine. SubStateMachines are only active when the parent machine is in an appropriate state.

Events produced by SubStateMachines may be suppressed by the parent machine. In some cases, the parent machine will produce a single Event that reflects changes in multiple SubStateMachines.

FiniteStateMachineType is subtype of StateMachineType that provides a mechanism to explicitly define the states and transitions. A Server should use this mechanism if it knows what the possible states are and the state machine is not trivial. The FiniteStateMachineType is defined in B.4.5
The StateMachineType is formally defined in Table 147.

Table 147 – StateMachineType Definition

	Attribute
	Value

	BrowseName
	StateMachineType

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in 6.2.

Note that a Reference to this sub type is not shown in the definition of the BaseObjectType.

	HasSubtype
	ObjectType
	FiniteStateMachineType
	Defined in B.4.5

	HasComponent
	Variable
	CurrentState
	LocalizedText
	StateVariableType
	Mandatory

	HasComponent
	Variable
	LastTransition
	LocalizedText
	TransitionVariableType
	Optional

CurrentState stores the current state of an instance of the StateMachineType. CurrentState provides a human readable name for the current state which may not be suitable for use in application control logic. Applications should use the Id Property of CurrentState if they need a unique identifier for the state.

LastTransition stores the last transition which occurred in an instance of the StateMachineType. LastTransition provides a human readable name for the last transition which may not be suitable for use in application control logic. Applications should use the Id Property of LastTransition if they need a unique identifier for the transition.

B.4.3 StateVariableType

The StateVariableType is the base VariableType for Variables that store the current state of a StateMachine as a human readable name.

The StateVariableType is formally defined in Table 147.

Table 148 – StateVariableType Definition

	Attribute
	Value

	BrowseName
	StateVariableType

	DataType
	LocalizedText

	ValueRank
	-1 (-1 = Scalar)

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4.

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

	HasSubtype
	VariableType
	FiniteStateVariableType
	Defined in B.4.6

	HasProperty
	Variable
	Id
	BaseDataType
	PropertyType
	Mandatory

	HasProperty
	Variable
	Name
	QualifiedName
	PropertyType
	Optional

	HasProperty
	Variable
	Number
	UInt32
	PropertyType
	Optional

	HasProperty
	Variable
	EffectiveDisplayName
	LocalizedText
	PropertyType
	Optional

Id is a name which uniquely identifies the current state within the StateMachineType. A subtype may restrict the DataType.

Name is a QualifiedName which uniquely identifies the current state within the StateMachineType.

Number is an integer which uniquely identifies the current state within the StateMachineType.

EffectiveDisplayName contains a human readable name for the current state of the state machine after taking the state of any SubStateMachines in account. There is no rule specified for which state or sub-state should be used. It is up to the server and will depend on the semantics of the StateMachineType.

StateMachines produce Events which may include the current state of a StateMachine. In that case servers shall provide all the optional Properties of the StateVariableType in the Event, even if they are not provided on the instances in the AddressSpace.

B.4.4 TransitionVariableType

The TransitionVariableType is the base VariableType for Variables that store a Transition that occurred within a StateMachine as a human readable name.

The SourceTimestamp for the value specifies when the Transition occurred. This value may also be exposed with the TransitionTime Property.

The TransitionVariableType is formally defined in Table 149.

Table 149 – TransitionVariableType Definition

	Attribute
	Value

	BrowseName
	TransitionVariableType

	DataType
	LocalizedText

	ValueRank
	-1 (-1 = Scalar)

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4.

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

	HasSubtype
	VariableType
	FiniteTransitionVariableType
	Defined in B.4.7

	HasProperty
	Variable
	Id
	BaseDataType
	PropertyType
	Mandatory

	HasProperty
	Variable
	Name
	QualifiedName
	PropertyType
	Optional

	HasProperty
	Variable
	Number
	UInt32
	PropertyType
	Optional

	HasProperty
	Variable
	TransitionTime
	UtcTime
	PropertyType
	Optional

Id is a name which uniquely identifies a Transition within the StateMachineType. A subtype may restrict the DataType.

Name is a QualifiedName which uniquely identifies a transition within the StateMachineType.

Number is an integer which uniquely identifies a transition within the StateMachineType.
TransitionTime specifies when the transition occurred.
B.4.5 FiniteStateMachineType

The FiniteStateMachineType is the base ObjectType for StateMachines that explicitly define the possible States and Transitions. Once the States are defined subtypes shall not add new States (See B.4.18).
The States of the machine are represented with instances of the StateType ObjectType. Each State shall have a BrowseName which is unique within the StateMachine and shall have a StateNumber which shall also be unique across all States defined in the StateMachine. Be aware that States in a SubStateMachine may have the same StateNumber or BrowseName as States in the parent machine. A concrete subtype of FiniteStateMachineType shall define at least one State.

A StateMachine may define one State which is an instance of the InitialStateType. This State is the State that the machine goes into when it is activated.

The Transitions that may occur are represented with instances of the TransitionType. Each Transition shall have a BrowseName which is unique within the StateMachine and may have a TransitionNumber which shall also be unique across all Transitions defined in the StateMachine.

The initial State for a Transition is a StateType Object which is the target of a FromState Reference. The final State for a Transition is a StateType Object which is the target of a ToState Reference. The FromState and ToState References shall always be specified.

A Transition may produce an Event. The Event is indicated by a HasEffect Reference to a subtype of BaseEventType. The StateMachineType shall have GeneratesEvent References to the targets of a HasEffect Reference for each of its Transitions.

A FiniteStateMachineType may define Methods that cause a transition to occur. These Methods are targets of HasCause References for each of the Transitions that may be triggered by the Method. The Executable Attribute for a Method is used to indicate whether the current State of the machine allows the Method to be called.

A FiniteStateMachineType may have sub-state-machines which are represented as instances of StateMachineType ObjectTypes. Each State shall have a HasSubStateMachine Reference to the StateMachineType Object which represents the child States. The SubStateMachine is not active if the parent State is not active.

The FiniteStateMachineType is formally defined in Table 150.

Table 150 – FiniteStateMachineType Definition

	Attribute
	Value

	BrowseName
	FiniteStateMachineType

	IsAbstract
	True

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the StateMachineType defined in 6.2.

	HasComponent
	Variable
	CurrentState
	LocalizedText
	FiniteStateVariableType
	Mandatory

	HasComponent
	Variable
	LastTransition
	LocalizedText
	FiniteTransitionVariableType
	Optional

B.4.6 FiniteStateVariableType

The FiniteStateVariableType is a subtype of StateVariableType and is used to store the current state of a FiniteStateMachine as a human readable name.

The FiniteStateVariableType is formally defined in Table 151.

Table 151 – FiniteStateVariableType Definition

	Attribute
	Value

	BrowseName
	FiniteStateVariableType

	DataType
	LocalizedText

	ValueRank
	-1 (-1 = Scalar)

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the StateVariableType defined in B.4.3

	HasProperty
	Variable
	Id
	NodeId
	PropertyType
	Mandatory

	HasProperty
	Variable
	Name
	QualifiedName
	PropertyType
	Optional

	HasProperty
	Variable
	Number
	UInt32
	PropertyType
	Optional

	HasProperty
	Variable
	EffectiveDisplayName
	LocalizedText
	PropertyType
	Optional

Id is inherited from the StateVariableType and overridden to reflect the required DataType. This value shall be the NodeId of one of the State Objects of the FiniteStateMachineType.

Name inherited from StateVariableType shall be the BrowseName of one of the State Objects of the FiniteStateMachineType.

Number inherited from StateVariableType shall be the StateNumber for one of the State Objects of the FiniteStateMachineType.

B.4.7 FiniteTransitionVariableType

The FiniteTransitionVariableType is a subtype of TransitionVariableType and is used to store a Transition that occurred within a FiniteStateMachine as a human readable name.

The TransitionVariableType is formally defined in Table 152.

Table 152 – FiniteTransitionVariableType Definition

	Attribute
	Value

	BrowseName
	FiniteTransitionVariableType

	DataType
	LocalizedText

	ValueRank
	-1 (-1 = Scalar)

	IsAbstract
	False

	References
	Node
Class
	BrowseName
	DataType
	TypeDefinition
	Modelling
Rule

	Subtype of the BaseDataVariableType defined in 7.4.

Note that a Reference to this subtype is not shown in the definition of the BaseDataVariableType.

	HasProperty
	Variable
	Id
	NodeId
	PropertyType
	Mandatory

Id is inherited from the TransitionVariableType and overridden to reflect the required DataType. This value shall be the NodeId of one of the Transition Objects of the FiniteStateMachineType.

Name inherited from the TransitionVariableType shall be the BrowseName of one of the Transition Objects of the FiniteStateMachineType.

Number inherited from the TransitionVariableType shall be the TransitionNumber for one of the Transition Objects of the FiniteStateMachineType.

B.4.8 StateType

States of a FiniteStateMachine are represented as Objects of the StateType.
The StateType is formally defined in Table 153.

Table 153 – StateType Definition

	Attribute
	Value

	BrowseName
	StateType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2. Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

	HasProperty
	Variable
	StateNumber
	UInt32
	PropertyType
	Mandatory

	HasSubtype
	ObjectType
	InitialStateType
	Defined in B.4.9

B.4.9 InitialStateType

The InitialStateType is a subtype of the StateType and is formally defined in Table 153. An Object of the InitialStateType represents the State that a FiniteStateMachine enters when it activated. Each FiniteStateMachine can have at most one State of type InitialStateType, but a FiniteStateMachine does not have to have a State of this type.

A SubStateMachine goes into its initial state whenever the parent state is entered. However, a state machine may define a transition that goes directly to a state of the SubStateMachine. In this case the SubStateMachine goes into that State instead of the initial State. The two scenarios are illustrated in Figure 13. The transition from State5 to State6 causes the SubStateMachine to go into the initial State (State7), however, the transition from State4 to State8 causes the parent machine to go to State6 and the SubStateMachine will go to State8.

[image: image13.emf] State4

 State5

 State6

 State8

State7

Method3

Figure 13 – Example of an initial State in a sub-machine

If no initial state for a SubStateMachine exists and the State having the SubStateMachine is entered directly, then the State of the SubStateMachine is server specific.

Table 154 – InitialStateType Definition

	Attribute
	Value

	BrowseName
	InitialStateType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the StateType defined in B.4.8

B.4.10 TransitionType

Transitions of a FiniteStateMachine are represented as Objects of the ObjectType TransitionType formally defined in Table 155.

Each valid Transition shall have exactly one FromState Reference and exactly one ToState Reference, each pointing to an Object of the ObjectType StateType.

Each Transition can have one or more HasCause References pointing to the cause that triggers the Transition.

Each Transition can have one or more HasEffect References pointing to the effects that occur when the Transition was triggered.

Table 155 – TransitionType Definition

	Attribute
	Value

	BrowseName
	TransitionType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the BaseObjectType defined in 6.2. Note that a Reference to this subtype is not shown in the definition of the BaseObjectType.

	HasProperty
	Variable
	TransitionNumber
	UInt32
	PropertyType
	Mandatory

B.4.11 FromState

The FromState ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to the starting State the Transition connects.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType StateType or one of its subtypes.

The representation of the FromState ReferenceType in the AddressSpace is specified in Table 156.

Table 156 – FromState ReferenceType

	Attributes
	Value

	BrowseName
	FromState

	InverseName
	ToTransition

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

B.4.12 ToState

The ToState ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to the ending State the Transition connects.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or one of its subtypes. The TargetNode of this ReferenceType shall be an Object of the ObjectType StateType or one of its subtypes.

References of this ReferenceType may be only exposed uni-directional. Sometimes this is required, for example, if a Transition points to a State of a sub-machine.

The representation of the ToState ReferenceType in the AddressSpace is specified in Table 157.

Table 157 – ToState ReferenceType

	Attributes
	Value

	BrowseName
	ToState

	InverseName
	FromTransition

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

B.4.13 HasCause

The HasCause ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to something that causes the Transition. In this Appendix we only define Methods as Causes. However, the ReferenceType is not restricted to point to Methods.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasCause ReferenceType in the AddressSpace is specified in Table 158.

Table 158 – HasCause ReferenceType

	Attributes
	Value

	BrowseName
	HasCause

	InverseName
	MayBeCausedBy

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

B.4.14 HasEffect

The HasEffect ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point form a Transition to something that will be effected when the Transition is triggered. In this Appendix we only define EventTypes as Effects. However, the ReferenceType is not restricted to point to EventTypes.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType or one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffect ReferenceType in the AddressSpace is specified in Table 159.

Table 159 – HasEffect ReferenceType

	Attributes
	Value

	BrowseName
	HasEffect

	InverseName
	MayBeEffectedBy

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

B.4.15 HasSubStateMachine

The HasSubStateMachine ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to point from a State to an instance of a StateMachineType which represents the sub-states for the State.

The SourceNode of this ReferenceType shall be an Object of the ObjectType StateType. The TargetNode shall be an Object of the ObjectType StateMachineType or one of its subtypes. Each Object can be the TargetNode of at most one HasSubStateMachine Reference.

The SourceNode (the state) and the TargetNode (the SubStateMachine) shall belong to the same StateMachine, i.e. both shall be referenced from the same Object of type StateMachineType using a HasComponent Reference or a subtype of HasComponent.

The representation of the HasSubStateMachine ReferenceType in the AddressSpace is specified in Table 160.

Table 160 – HasSubStateMachine ReferenceType

	Attributes
	Value

	BrowseName
	HasSubStateMachine

	InverseName
	SubStateMachineOf

	Symmetric
	False

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	Comment

	
	
	
	

B.4.16 TransitionEventType

The TransitionEventType is a subtype of the BaseEventType. It can be used to generate an Event identifying that a Transition of a StateMachine was triggered. It is formally defined in Table 161.

Table 161 - TransitionEventType

	Attribute
	Value

	BrowseName
	TransitionEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the base BaseEventType defined in 6.4.2

	HasComponent
	Variable
	Transition
	LocalizedText
	TransitionVariableType
	Mandatory

	HasComponent
	Variable
	FromState
	LocalizedText
	StateVariableType
	Mandatory

	HasComponent
	Variable
	ToState
	LocalizedText
	StateVariableType
	Mandatory

The TransitionEventType inherits the Properties of the BaseEventType.

The inherited Property SourceNode shall be filled with the NodeId of the StateMachine instance were the Transition occurs. If the Transition occurs in a SubStateMachine, then the NodeId of the SubStateMachine has to be used. If the Transition occurs between a StateMachine and a SubStateMachine, then the NodeId of the StateMachine has to be used, independent of the direction of the Transition.

Transition identifies the Transition that triggered the Event.

FromState identifies the State before the Transition.

ToState identifies the State after the Transition.

B.4.17 AuditUpdateStateEventType

The AuditUpdateStateEventType is a subtype of the AuditUpdateMethodEventType. It can be used to generate an Event identifying that a Transition of a StateMachine was triggered. It is formally defined in Table 162.

Table 162 - AuditUpdateStateEventType

	Attribute
	Value

	BrowseName
	AuditUpdateStateEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Subtype of the AuditUpdateMethodEventType defined in 6.4.27

	HasProperty
	Variable
	OldStateId
	BaseDataType
	PropertyType
	Mandatory

	HasProperty
	Variable
	NewStateId
	BaseDataType
	PropertyType
	Mandatory

The AuditUpdateStateEventType inherits the Properties of the AuditUpdateMethodEventType.

The inherited Property SourceNode shall be filled with the NodeId of the StateMachine instance were the State changed. If the State changed in a SubStateMachine, then the NodeId of the SubStateMachine has to be used.

The SourceName for Events of this type should be the effect that generated the event (e.g. the name of a Method). If the effect was generated by a Method call, the SourceName should be the name of the Method prefixed with “Method/”.

OldStateId reflects the Id of the state prior the change.

NewStateId reflects the new Id of the state after the change.

B.4.18 Special Restrictions on subtyping StateMachines

In general, all rules on subtyping apply for StateMachine types as well. Some additional rules apply for StateMachine types. If a StateMachine type is not abstract, subtypes of it shall not change the behaviour of it. That means, that in that case a subtype shall not add States and it shall not add Transitions between its States. However, a subtype may add SubStateMachines, it may add Transitions from the States to the States of the SubStateMachine, and it may add Causes and Effects to a Transition. In addition, a subtype of a StateMachine type shall not remove States or Transitions.

B.4.19 Specific StatusCodes for StateMachines

In Table 163 specific StatusCodes used for StateMachines are defined.

Table 163 – Specific StatusCodes for StateMachines

	Symbolic Id
	Description

	Bad_StateNotActive
	The accessed state is not active.

B.5 Examples of StateMachines in the AddressSpace

B.5.1 StateMachineType using inheritance

[image: image14.emf]StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

StateType

TransitionType

ToState

FromState

MyMethod

HasCause

EventType1

HasEffect

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

GeneratesEvent

MyMethod

Figure 14 – Example of a StateMachineType using inheritance

In Figure 14 an example of a StateMachine is given using the Notation defined in the Appendix of Part 3. First, a new StateMachineType is defined, called “MyStateMachineType”, inheriting from the base FiniteStateMachineType. It contains two States, “State1” and “State2” and a Transition “Transition1” between them. The Transition points to a Method “MyMethod” as the Cause of the Transition and an EventType “EventType1” as the Effect of the Transition.

Instances of “MyStateMachineType” can be created, for example “MyStateMachine”. It has a Variable “CurrentState” representing the current State. The “MyStateMachine” Object only includes the Nodes which expose information specific to the instance.

B.5.2 StateMachineType with a sub-machine using inheritance

[image: image15.emf]StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MySubMachine

AnotherStateMachineType

StateX

CurrentState

No value assigned

MySubMachine

CurrentState

Contains the current state of MySubMachine if

MyStateMachine is in State1, otherwise a BAD

status code is assigned to it.

HasSubStateMachine

StateY

Figure 15 – Example of a StateMachineType with a SubStateMachine using inheritance

Figure 15 gives an example of a StateMachineType having a SubStateMachine for its “State1”. For simplicity no effects and causes are shown, as well as type information for the States or ModellingRules.

The “MyStateMachineType” contains an Object “MySubMachine” of type “AnotherStateMachineType” representing a SubStateMachine. The “State1” references this Object with a HasSubStateMachine Reference, thus it is a SubStateMachine of “State1”. Since “MySubMachine” is an Object of type “AnotherStateMachineType” it has a Variable representing the current State. Since it is used as an InstanceDeclaration, no value is assigned to this Variable.

An Object of “MyStateMachineType”, called “MyStateMachine” has Variables for the current State, but also has an Object “MySubMachine” and a Variable representing the current state of the SubStateMachine. Since the SubStateMachine is only used when “MyStateMachine” is in “State1”, a client would receive a Bad_StateNotActive StatusCode when reading the SubStateMachine CurrentState Variable if “MyStateMachine” is in a different State.

B.5.3 StateMachineType using containment

[image: image16.emf]BaseObjectType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyMethod

HasCause

EventType1

HasEffect

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MyObjectType

MyComponent

MyStateMachine

CurrentState

MyObject

MyComponent

MyMethod

GeneratesEvent

MyMethod

Figure 16 – Example of a StateMachineType using containment

Figure 16 gives an example of an ObjectType not only representing a StateMachine but also having some other functionality. The ObjectType “MyObjectType” has an Object “MyComponent” representing this other functionality. But is also contains a StateMachine “MyStateMachine” of the type “MyStateMachineType”. Objects of “MyObjectType” also contain such an Object representing the StateMachine and a Variable containing the current state of the StateMachine, as shown in the Figure.

B.5.4 Example of a StateMachine having Transitions to SubStateMachines

The StateMachines shown so far only had Transitions between States on the same level, i.e. on the same StateMachine. Of cause, it is possible and often required to have Transitions between States of the StateMachine and States of its SubStateMachine.

Because a SubStateMachine can be defined by another StateMachineType and this type can be used in several places, it is not possible to add a bi-directional Reference from one of the shared States of the SubStateMachine to another StateMachine. In this case it is suitable to expose the FromState or ToState References uni-directional, i.e. only pointing from the Transition to the State and not have the other direction browsable. If a Transition points from a State of a SubStateMachine to a State of another sub-machine, both, the FromState and the ToState Reference, are handled uni-directional.

A Client shall be able to handle the information of a StateMachine if the ToState and FromState References are only exposed as forward References and the inverse References are omitted.

Figure 17 gives an example of a state machine having a transition from a sub-state to a state.

[image: image17.emf]State1

State2

StateX

Figure 17 – Example of a state machine with transitions from sub-states

In Figure 18, the representation of this example as StateMachineType in the AddressSpace is given. The “Transition1”, part of the definition of “MyStateMachineType”, points to the “StateX” of the StateMachineType “AnotherStateMachineType”. The Reference is only exposed as forward Reference and the inverse Reference is omitted. Thus, there is no Reference from the “StateX” of “AnotherStateMachineType” to any part of “MyStateMachineType” and “AnotherStateMachineType” can be used in other places as well.

[image: image18.emf]StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

No value assigned for the TypeDefinition

For simplicity the Properties of

CurrentState are not shown

State1

State2

Transition1

ToState

FromState

MyStateMachine

CurrentState

Contains the current state of MyStateMachine

MySubMachine

AnotherStateMachineType

StateX

CurrentState

No value assigned

MySubMachine

CurrentState

Contains the current state of MySubMachine if

MyStateMachine is in State1, otherwise a BAD

status code is assigned to it.

HasSubStateMachine

Reference is

only exposed

uni-directional

Figure 18 – Example of a StateMachineType having Transitions to SubStateMachines

� The URI of the ServerArray with Index 0 must be identical to the URI of the NamespaceArray with Index 1, since both represent the local server.

� : This row represents no Node in the AddressSpace. It is a placeholder pointing out that instances of the ObjectType will have those Objects.

�Mantis issue 108

�Mantis issue 108

�Only true for value attribute or for all?!?

�Mantis issue 145

�Mantis issue 108

�Correct data type?

�Mantis issue 108

�What status code?

�Mantis issue 108

�Publish??

�Was this the intention???

�Correct data type?

_1207998776.doc

ObjectType

“ServerType”

HasComponent

Object

 “ObjectTypes”

0..N

Organizes

Organizes

Object

“ServerCapabilities”

Object

“ServerTypes”

HasSubtype

Organizes

ObjectType

“BaseObjectType”

_1268207144.doc

Variable

“ClientName”

Variable

“123”

HasComponent

One array entry for each subscription of the session, also exposed as variable

Redundant Information

Variable

“SessionDiagnosticsArray”

One array entry for each subscription of the server, also exposed as variable

HasComponent

One Object per session

HasComponent

HasComponent

HasComponent

0..N

HasComponent

Variable

“Session1”

HasComponent

Variable

“SubscriptionDiagnosticsArray”

Object

“Session1”

Variable

“PublishingRate”

HasComponent

HasComponent

Variable

“123”

Variable

“PublishingRate”

Complex Variable contains the same information in its value as its properties

Variable

“SessionId”

One array entry per session, this information is also exposed as Variable

HasComponent

HasComponent

Object

“SessionsDiagnosticsSummary””

HasComponent

Object

 “ServerDiagnostics”

Variable

“SubscriptionDiagnosticsArray”

_1272204450.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Asymmetric
Reference

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

_1272204602.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Asymmetric
Reference

BaseObjectType

FiniteStateMachineType

MyStateMachineType

MyMethod

CurrentState

_1283089418.doc

ObjectType

“AuditEventType”

Object

 “EventTypes”

0..N

Organizes

Organizes

Object

“AuditEventTypes”

HasSubtype

Organizes

ObjectType

“BaseEventType”

_1272204636.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

_1272204588.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

StateMachineType

FiniteStateMachineType

MyStateMachineType

CurrentState

_1270917705.vsd
Object

Variable

VariableType

ObjectType

Method

Asymmetric
Reference

CurrentState

StateMachineType

StateType

Id

TransitionType

StateNumber

LastTransition

TransitionNumber

StateVariableType

Name

Number

Name

TransitionVariableType

Id

Number

TransitionTime

FiniteStateMachineType

Effective
DisplayName

MyFiniteStateMachineType

MyState

MyTransition

MyMethod

FromState

ToState

HasCause

MyEventType

GeneratesEvent

HasEffect

InitialStateType

_1210663608.doc

Object

 “DataTypes”

HasComponent

Variable

“DTDesc1”

HasComponent

HasComponent

Object

 “OPC Binary”

Organizes

0..N

Variable

“OPCDict_2”

HasComponent

Organizes

HasDescription

HasEncoding

Object

 “Default Binary”

DataType

 “Int32”

Variable

“Dev_1.xsd”

Organizes

HasComponent

HasComponent

Variable

“DTDesc1”

Variable

“OPCDict_1”

Object

 “XML Schema”

Variable

“Dev_2.xsd”

_1210665113.doc

ObjectTypes

Types

ReferenceTypes

0..N

Objects

VariableTypes

Views

DataTypes

OPC UA Root

Server

_1207999530.doc

ReferenceType

“RT_1”

Organizes

ReferenceType

“HierarchicalReferences”

Object

 “ReferenceTypes”

0..N

Organizes

HasSubtype

ReferenceType

“References”

HasSubtype

Organizes

Object

“MyRefTypes”

_1207976439.doc

standard

Server Object

Variable

“C1”

HasProperty

Object

“Server”

Object

 “Objects”

0..N

Organizes

Organizes

Object

“B1”

Object

“A1”

Organizes

Organizes

Object

“C1”

_1207998629.doc

VariableType

“VT_1”

Organizes

HasSubtype

Object

 “VariableTypes”

0..N

Organizes

Variable Type

“BaseDataVariableType”

VariableType

“BaseVariableType”

HasSubtype

Organizes

Object

“MyVariableTypes”

_1207976393.doc

Object

“Engineering”

Organizes

View

“View3”

Object

“Views”

Organizes

0..N

View

“View1”

Organizes

View

“View2”

Organizes

